Cargando…
Multi-omics-data-assisted genomic feature markers preselection improves the accuracy of genomic prediction
BACKGROUND: Presently, multi-omics data (e.g., genomics, transcriptomics, proteomics, and metabolomics) are available to improve genomic predictors. Omics data not only offers new data layers for genomic prediction but also provides a bridge between organismal phenotypes and genome variation that ca...
Autores principales: | Ye, Shaopan, Li, Jiaqi, Zhang, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708144/ https://www.ncbi.nlm.nih.gov/pubmed/33292577 http://dx.doi.org/10.1186/s40104-020-00515-5 |
Ejemplares similares
-
Preselection of QTL markers enhances accuracy of genomic selection in Norway spruce
por: Chen, Zhi-Qiang, et al.
Publicado: (2023) -
Using imputation-based whole-genome sequencing data to improve the accuracy of genomic prediction for combined populations in pigs
por: Song, Hailiang, et al.
Publicado: (2019) -
Avoiding preselection bias in subsequent single‐step genomic BLUP evaluations of genomically preselected animals
por: Jibrila, Ibrahim, et al.
Publicado: (2020) -
Incorporating kernelized multi-omics data improves the accuracy of genomic prediction
por: Liang, Mang, et al.
Publicado: (2022) -
Multi-line ssGBLUP evaluation using preselected markers from whole-genome sequence data in pigs
por: Jang, Sungbong, et al.
Publicado: (2023)