Cargando…

Platelet proteome changes in dogs with congestive heart failure

BACKGROUND: Platelets play a central role in the development of cardiovascular diseases and changes in their proteins are involved in the pathophysiology of heart diseases in humans. There is lack of knowledge about the possible role of platelets in congestive heart failure (CHF) in dogs. Thus, this...

Descripción completa

Detalles Bibliográficos
Autores principales: Levent, Pinar, Kocaturk, Meriç, Akgun, Emel, Saril, Ahmet, Cevik, Ozge, Baykal, Ahmet Tarik, Tanaka, Ryou, Ceron, Jose Joaquin, Yilmaz, Zeki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708215/
https://www.ncbi.nlm.nih.gov/pubmed/33256720
http://dx.doi.org/10.1186/s12917-020-02692-x
Descripción
Sumario:BACKGROUND: Platelets play a central role in the development of cardiovascular diseases and changes in their proteins are involved in the pathophysiology of heart diseases in humans. There is lack of knowledge about the possible role of platelets in congestive heart failure (CHF) in dogs. Thus, this study aimed to investigate the changes in global platelet proteomes in dogs with CHF, to clarify the possible role of platelets in the physiopathology of this disease. Healthy-dogs (n = 10) and dogs with acute CHF due to myxomatous mitral valve disease (MMVD, n = 10) were used. Acute CHF was defined based on the clinical (increased respiratory rate or difficulty breathing) and radiographic findings of pulmonary edema. Dogs Blood samples were collected into tubes with acid-citrate-dextrose, and platelet-pellets were obtained by centrifuge and washing steps. Platelet-proteomes were identified using LC-MS based label-free differential proteome expression analysis method and matched according to protein database for Canis lupus familiaris. RESULTS: Totally 104 different proteins were identified in the platelets of the dogs being 4 out of them were significantly up-regulated and 6 down-regulated in acute CHF dogs. Guanine-nucleotide-binding protein, apolipoproteins (A-II and C-III) and clusterin levels increased, but CXC-motif-chemokine-10, cytochrome-C-oxidase-subunit-2, cathepsin-D, serine/threonine-protein-phosphatase-PP1-gamma-catalytic-subunit, creatine-kinase-B-type and myotrophin levels decreased in acute CHF dogs. These proteins are associated with several molecular functions, biological processes, signaling systems and immune-inflammatory responses. CONCLUSION: This study describes by first time the changes in the protein composition in platelets of dogs with acute CHF due to MMVD. Our findings provide a resource for increase the knowledge about the proteome of canine platelets and their roles in CHF caused by MMVD and could be a tool for further investigations about the prevention and treatment of this disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12917-020-02692-x.