Cargando…

A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation

PURPOSE: Childhood epilepsies have a strong genetic contribution, but the disease trajectory for many genetic etiologies remains unknown. Electronic medical record (EMR) data potentially allow for the analysis of longitudinal clinical information but this has not yet been explored. METHODS: We analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Ganesan, Shiva, Galer, Peter D., Helbig, Katherine L., McKeown, Sarah E., O’Brien, Margaret, Gonzalez, Alexander K., Felmeister, Alex S., Khankhanian, Pouya, Ellis, Colin A., Helbig, Ingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708303/
https://www.ncbi.nlm.nih.gov/pubmed/32773773
http://dx.doi.org/10.1038/s41436-020-0923-1
_version_ 1783617532396044288
author Ganesan, Shiva
Galer, Peter D.
Helbig, Katherine L.
McKeown, Sarah E.
O’Brien, Margaret
Gonzalez, Alexander K.
Felmeister, Alex S.
Khankhanian, Pouya
Ellis, Colin A.
Helbig, Ingo
author_facet Ganesan, Shiva
Galer, Peter D.
Helbig, Katherine L.
McKeown, Sarah E.
O’Brien, Margaret
Gonzalez, Alexander K.
Felmeister, Alex S.
Khankhanian, Pouya
Ellis, Colin A.
Helbig, Ingo
author_sort Ganesan, Shiva
collection PubMed
description PURPOSE: Childhood epilepsies have a strong genetic contribution, but the disease trajectory for many genetic etiologies remains unknown. Electronic medical record (EMR) data potentially allow for the analysis of longitudinal clinical information but this has not yet been explored. METHODS: We analyzed provider-entered neurological diagnoses made at 62,104 patient encounters from 658 individuals with known or presumed genetic epilepsies. To harmonize clinical terminology, we mapped clinical descriptors to Human Phenotype Ontology (HPO) terms and inferred higher-level phenotypic concepts. We then binned the resulting 286,085 HPO terms to 100 3-month time intervals and assessed gene–phenotype associations at each interval. RESULTS: We analyzed a median follow-up of 6.9 years per patient and a cumulative 3251 patient years. Correcting for multiple testing, we identified significant associations between “Status epilepticus” with SCN1A at 1.0 years, “Severe intellectual disability” with PURA at 9.75 years, and “Infantile spasms” and “Epileptic spasms” with STXBP1 at 0.5 years. The identified associations reflect known clinical features of these conditions, and manual chart review excluded provider bias. CONCLUSION: Some aspects of the longitudinal disease histories can be reconstructed through EMR data and reveal significant gene–phenotype associations, even within closely related conditions. Gene-specific EMR footprints may enable outcome studies and clinical decision support.
format Online
Article
Text
id pubmed-7708303
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-77083032020-12-07 A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation Ganesan, Shiva Galer, Peter D. Helbig, Katherine L. McKeown, Sarah E. O’Brien, Margaret Gonzalez, Alexander K. Felmeister, Alex S. Khankhanian, Pouya Ellis, Colin A. Helbig, Ingo Genet Med Article PURPOSE: Childhood epilepsies have a strong genetic contribution, but the disease trajectory for many genetic etiologies remains unknown. Electronic medical record (EMR) data potentially allow for the analysis of longitudinal clinical information but this has not yet been explored. METHODS: We analyzed provider-entered neurological diagnoses made at 62,104 patient encounters from 658 individuals with known or presumed genetic epilepsies. To harmonize clinical terminology, we mapped clinical descriptors to Human Phenotype Ontology (HPO) terms and inferred higher-level phenotypic concepts. We then binned the resulting 286,085 HPO terms to 100 3-month time intervals and assessed gene–phenotype associations at each interval. RESULTS: We analyzed a median follow-up of 6.9 years per patient and a cumulative 3251 patient years. Correcting for multiple testing, we identified significant associations between “Status epilepticus” with SCN1A at 1.0 years, “Severe intellectual disability” with PURA at 9.75 years, and “Infantile spasms” and “Epileptic spasms” with STXBP1 at 0.5 years. The identified associations reflect known clinical features of these conditions, and manual chart review excluded provider bias. CONCLUSION: Some aspects of the longitudinal disease histories can be reconstructed through EMR data and reveal significant gene–phenotype associations, even within closely related conditions. Gene-specific EMR footprints may enable outcome studies and clinical decision support. Nature Publishing Group US 2020-08-10 2020 /pmc/articles/PMC7708303/ /pubmed/32773773 http://dx.doi.org/10.1038/s41436-020-0923-1 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ganesan, Shiva
Galer, Peter D.
Helbig, Katherine L.
McKeown, Sarah E.
O’Brien, Margaret
Gonzalez, Alexander K.
Felmeister, Alex S.
Khankhanian, Pouya
Ellis, Colin A.
Helbig, Ingo
A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
title A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
title_full A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
title_fullStr A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
title_full_unstemmed A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
title_short A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
title_sort longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708303/
https://www.ncbi.nlm.nih.gov/pubmed/32773773
http://dx.doi.org/10.1038/s41436-020-0923-1
work_keys_str_mv AT ganesanshiva alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT galerpeterd alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT helbigkatherinel alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT mckeownsarahe alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT obrienmargaret alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT gonzalezalexanderk alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT felmeisteralexs alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT khankhanianpouya alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT elliscolina alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT helbigingo alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT ganesanshiva longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT galerpeterd longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT helbigkatherinel longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT mckeownsarahe longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT obrienmargaret longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT gonzalezalexanderk longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT felmeisteralexs longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT khankhanianpouya longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT elliscolina longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation
AT helbigingo longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation