Cargando…
A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation
PURPOSE: Childhood epilepsies have a strong genetic contribution, but the disease trajectory for many genetic etiologies remains unknown. Electronic medical record (EMR) data potentially allow for the analysis of longitudinal clinical information but this has not yet been explored. METHODS: We analy...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708303/ https://www.ncbi.nlm.nih.gov/pubmed/32773773 http://dx.doi.org/10.1038/s41436-020-0923-1 |
_version_ | 1783617532396044288 |
---|---|
author | Ganesan, Shiva Galer, Peter D. Helbig, Katherine L. McKeown, Sarah E. O’Brien, Margaret Gonzalez, Alexander K. Felmeister, Alex S. Khankhanian, Pouya Ellis, Colin A. Helbig, Ingo |
author_facet | Ganesan, Shiva Galer, Peter D. Helbig, Katherine L. McKeown, Sarah E. O’Brien, Margaret Gonzalez, Alexander K. Felmeister, Alex S. Khankhanian, Pouya Ellis, Colin A. Helbig, Ingo |
author_sort | Ganesan, Shiva |
collection | PubMed |
description | PURPOSE: Childhood epilepsies have a strong genetic contribution, but the disease trajectory for many genetic etiologies remains unknown. Electronic medical record (EMR) data potentially allow for the analysis of longitudinal clinical information but this has not yet been explored. METHODS: We analyzed provider-entered neurological diagnoses made at 62,104 patient encounters from 658 individuals with known or presumed genetic epilepsies. To harmonize clinical terminology, we mapped clinical descriptors to Human Phenotype Ontology (HPO) terms and inferred higher-level phenotypic concepts. We then binned the resulting 286,085 HPO terms to 100 3-month time intervals and assessed gene–phenotype associations at each interval. RESULTS: We analyzed a median follow-up of 6.9 years per patient and a cumulative 3251 patient years. Correcting for multiple testing, we identified significant associations between “Status epilepticus” with SCN1A at 1.0 years, “Severe intellectual disability” with PURA at 9.75 years, and “Infantile spasms” and “Epileptic spasms” with STXBP1 at 0.5 years. The identified associations reflect known clinical features of these conditions, and manual chart review excluded provider bias. CONCLUSION: Some aspects of the longitudinal disease histories can be reconstructed through EMR data and reveal significant gene–phenotype associations, even within closely related conditions. Gene-specific EMR footprints may enable outcome studies and clinical decision support. |
format | Online Article Text |
id | pubmed-7708303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-77083032020-12-07 A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation Ganesan, Shiva Galer, Peter D. Helbig, Katherine L. McKeown, Sarah E. O’Brien, Margaret Gonzalez, Alexander K. Felmeister, Alex S. Khankhanian, Pouya Ellis, Colin A. Helbig, Ingo Genet Med Article PURPOSE: Childhood epilepsies have a strong genetic contribution, but the disease trajectory for many genetic etiologies remains unknown. Electronic medical record (EMR) data potentially allow for the analysis of longitudinal clinical information but this has not yet been explored. METHODS: We analyzed provider-entered neurological diagnoses made at 62,104 patient encounters from 658 individuals with known or presumed genetic epilepsies. To harmonize clinical terminology, we mapped clinical descriptors to Human Phenotype Ontology (HPO) terms and inferred higher-level phenotypic concepts. We then binned the resulting 286,085 HPO terms to 100 3-month time intervals and assessed gene–phenotype associations at each interval. RESULTS: We analyzed a median follow-up of 6.9 years per patient and a cumulative 3251 patient years. Correcting for multiple testing, we identified significant associations between “Status epilepticus” with SCN1A at 1.0 years, “Severe intellectual disability” with PURA at 9.75 years, and “Infantile spasms” and “Epileptic spasms” with STXBP1 at 0.5 years. The identified associations reflect known clinical features of these conditions, and manual chart review excluded provider bias. CONCLUSION: Some aspects of the longitudinal disease histories can be reconstructed through EMR data and reveal significant gene–phenotype associations, even within closely related conditions. Gene-specific EMR footprints may enable outcome studies and clinical decision support. Nature Publishing Group US 2020-08-10 2020 /pmc/articles/PMC7708303/ /pubmed/32773773 http://dx.doi.org/10.1038/s41436-020-0923-1 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Ganesan, Shiva Galer, Peter D. Helbig, Katherine L. McKeown, Sarah E. O’Brien, Margaret Gonzalez, Alexander K. Felmeister, Alex S. Khankhanian, Pouya Ellis, Colin A. Helbig, Ingo A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation |
title | A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation |
title_full | A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation |
title_fullStr | A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation |
title_full_unstemmed | A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation |
title_short | A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation |
title_sort | longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708303/ https://www.ncbi.nlm.nih.gov/pubmed/32773773 http://dx.doi.org/10.1038/s41436-020-0923-1 |
work_keys_str_mv | AT ganesanshiva alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT galerpeterd alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT helbigkatherinel alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT mckeownsarahe alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT obrienmargaret alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT gonzalezalexanderk alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT felmeisteralexs alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT khankhanianpouya alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT elliscolina alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT helbigingo alongitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT ganesanshiva longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT galerpeterd longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT helbigkatherinel longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT mckeownsarahe longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT obrienmargaret longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT gonzalezalexanderk longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT felmeisteralexs longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT khankhanianpouya longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT elliscolina longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation AT helbigingo longitudinalfootprintofgeneticepilepsiesusingautomatedelectronicmedicalrecordinterpretation |