Cargando…
Using machine learning tools to predict outcomes for emergency department intensive care unit patients
The number of critically ill patients has increased globally along with the rise in emergency visits. Mortality prediction for critical patients is vital for emergency care, which affects the distribution of emergency resources. Traditional scoring systems are designed for all emergency patients usi...
Autores principales: | Zhai, Qiangrong, Lin, Zi, Ge, Hongxia, Liang, Yang, Li, Nan, Ma, Qingbian, Ye, Chuyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708467/ https://www.ncbi.nlm.nih.gov/pubmed/33262471 http://dx.doi.org/10.1038/s41598-020-77548-3 |
Ejemplares similares
-
A Retrospective Study: Quick Scoring of Symptoms to Estimate the Risk of Cardiac Arrest in the Emergency Department
por: Xu, Yaoke, et al.
Publicado: (2022) -
Early Prediction Model of Acute Aortic Syndrome Mortality in Emergency Departments
por: Wang, Daidai, et al.
Publicado: (2022) -
Optimal Time of Collapse to Return of Spontaneous Circulation to Apply Targeted Temperature Management for Cardiac Arrest: A Bayesian Network Meta-Analysis
por: Duan, Jingwei, et al.
Publicado: (2022) -
Case Report: An Unusual First Manifestation of a Pheochromocytoma
por: Zhai, Qiangrong, et al.
Publicado: (2021) -
Integrated emergency department and general intensive care unit management on health outcomes
por: Mao, Shan-Lin, et al.
Publicado: (2021)