Cargando…

Particle-in-cell simulation of the effect of dust charge fluctuation on ion acoustic waves in a dusty plasma

A new hybrid-particle-in-cell (PIC)-Monte Carlo Collision (h-PIC-MCC) algorithm is presented here. The code correctly simulates the damping of ion acoustic wave due to dust charge fluctuation in a dusty plasma along with other kinetic effects such as Landau damping. In the model, on event of a colli...

Descripción completa

Detalles Bibliográficos
Autores principales: Changmai, Suniti, Bora, Madhurjya P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708469/
https://www.ncbi.nlm.nih.gov/pubmed/33262458
http://dx.doi.org/10.1038/s41598-020-77772-x
Descripción
Sumario:A new hybrid-particle-in-cell (PIC)-Monte Carlo Collision (h-PIC-MCC) algorithm is presented here. The code correctly simulates the damping of ion acoustic wave due to dust charge fluctuation in a dusty plasma along with other kinetic effects such as Landau damping. In the model, on event of a collision between a charged particle and a dust particle, a randomised probability determines whether the charged particle is absorbed by the dust with the collision cross section being determined dynamically by the overall interaction scenario. We find that this method is versatile enough as it can also include the size and mass distribution for the dust particles, in addition to the charged species dynamics. As such, it can be adopted to study numerous phenomena that occur in diverse dusty plasma environments. We believe that the damping of the ion acoustic wave through dust charge fluctuation is being demonstrated, for the first time, with a PIC code, in this work.