Cargando…
Predicting the need for intubation in the first 24 h after critical care admission using machine learning approaches
Early and accurate prediction of the need for intubation may provide more time for preparation and increase safety margins by avoiding high risk late intubation. This study evaluates whether machine learning can predict the need for intubation within 24 h using commonly available bedside and laborat...
Autores principales: | Siu, Benjamin Ming Kit, Kwak, Gloria Hyunjung, Ling, Lowell, Hui, Pan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708470/ https://www.ncbi.nlm.nih.gov/pubmed/33262391 http://dx.doi.org/10.1038/s41598-020-77893-3 |
Ejemplares similares
-
Deep reinforcement learning approaches for global public health strategies for COVID-19 pandemic
por: Kwak, Gloria Hyunjung, et al.
Publicado: (2021) -
Potential Aerosol Generation by Bronchoscopy And Intubation: Another Piece in the Puzzle
por: Ling, Lowell, et al.
Publicado: (2020) -
Tuberculosis in hospitalized patients: clinical
characteristics of patients receiving treatment within the first 24 h after
admission
por: Silva, Denise Rossato, et al.
Publicado: (2014) -
Comparison of the Initiation Time of Enteral Nutrition for Critically Ill Patients: At Admission vs. 24 to 48 Hours after Admission
por: Yu, Anshan, et al.
Publicado: (2021) -
The association between plasma osmolality and in-hospital mortality in the first 24 h after neonatal intensive care unit admission
por: Liu, Weiqin, et al.
Publicado: (2023)