Cargando…

Experiments to understand crystallization of levitated high temperature silicate melt droplets under low vacuum conditions

We report experiments on crystallization of highly undercooled forsterite melt droplets under atmospheric and sub-atmospheric pressure conditions. Experiments have been conducted under non-contact conditions using the principles of aero-dynamic levitation. Real time dynamics of solidification, along...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Biswajit, Manvar, Pratikkumar, Choudhury, Kaushik, Karagadde, S., Srivastava, Atul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708509/
https://www.ncbi.nlm.nih.gov/pubmed/33262472
http://dx.doi.org/10.1038/s41598-020-77965-4
Descripción
Sumario:We report experiments on crystallization of highly undercooled forsterite melt droplets under atmospheric and sub-atmospheric pressure conditions. Experiments have been conducted under non-contact conditions using the principles of aero-dynamic levitation. Real time dynamics of solidification, along with the transient evolution of surface textures, have been recorded using high speed camera for three cooling rates. These images have been matched with the time-tagged temperature data to understand the effect of pressure conditions and cooling rates on the crystallization dynamics. Compared to normal pressure, relatively higher levels of undercooling could be achieved under sub-atmospheric conditions. Results showed a strong dependence of surface textures on pressure conditions. For any externally employed cooling rate, relatively small length scale morphological textures were observed under sub-atmospheric conditions, in comparison to those achieved under ambient conditions. The observed trends have been explained on the basis of influence of pressure conditions on recalescence phenomenon and the rate at which latent heat of crystallization gets dissipated from the volume of the molten droplet. Sub-atmospheric experiments have also been performed to reproduce one of the classical chondrule textures, namely the rim + dendrite double structure. Possible formation conditions of this double structure have been discussed vis-à-vis those reported in the limited literature. To the best of our knowledge, the reported study is one of the first attempts to reproduce chondrules-like textures from highly undercooled forsterite melt droplets under sub-atmospheric non-contact conditions.