Cargando…
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects
We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns late...
Autores principales: | Julkunen, Heli, Cichonska, Anna, Gautam, Prson, Szedmak, Sandor, Douat, Jane, Pahikkala, Tapio, Aittokallio, Tero, Rousu, Juho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708835/ https://www.ncbi.nlm.nih.gov/pubmed/33262326 http://dx.doi.org/10.1038/s41467-020-19950-z |
Ejemplares similares
-
Learning with multiple pairwise kernels for drug bioactivity prediction
por: Cichonska, Anna, et al.
Publicado: (2018) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021) -
Systematic mapping of cancer cell target dependencies using high-throughput drug screening in triple-negative breast cancer
por: Wang, Tianduanyi, et al.
Publicado: (2020) -
Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors
por: Cichonska, Anna, et al.
Publicado: (2017) -
Multiobjective optimization identifies cancer-selective combination therapies
por: Pulkkinen, Otto I., et al.
Publicado: (2020)