Cargando…

Novel method enabling a rapid vitality determination of cyanobacteria

Cyanobacteria represent a large group of bacteria with underestimated scientific potential. Recent studies indicate them as a great reservoir of secondary metabolites with antifungal, antiviral or antibacterial activity. However, common, well established research techniques cannot be easily adapted...

Descripción completa

Detalles Bibliográficos
Autores principales: Witthohn, Marco, Schwarz, Anna, Walther, Jakob, Strieth, Dorina, Ulber, Roland, Muffler, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708951/
https://www.ncbi.nlm.nih.gov/pubmed/33304231
http://dx.doi.org/10.1002/elsc.201900164
Descripción
Sumario:Cyanobacteria represent a large group of bacteria with underestimated scientific potential. Recent studies indicate them as a great reservoir of secondary metabolites with antifungal, antiviral or antibacterial activity. However, common, well established research techniques cannot be easily adapted to these organisms. Slow growth rates and irregular cell aggregates constitute challenges for researchers dealing with cyanobacteria. In this work, we present an innovative new method enabling a quick, easy and economical vitality determination of cyanobacterial strains, as, e.g. required for the finding of optimal cryopreservation conditions. We were able to measure the vitality of previously cryopreserved and defrosted Trichocoleus sociatus samples within 45 min by means of their O(2)‐production. For each run, a cell wet mass of only 0.5 g was required. By application of this method, we could find DMSO (5% v/v) and glycerin (15% v/v) to be the most promising cryoprotectants for the conservation of T. sociatus cells. DMSO and glycerin guaranteed a vitality rate of 80–90% and 60–70% after up to four weeks of cryopreservation, compared to fresh cell material.