Cargando…
Direct observation of morphological transition for an adsorbed single polymer chain
A better understanding of the structure of polymers at solid interfaces is crucial for designing various polymer nano-composite materials from structural materials to nanomaterials for use in industry. To this end, the first step is to obtain information on how synthetic polymer chains adsorb onto a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708982/ https://www.ncbi.nlm.nih.gov/pubmed/33262397 http://dx.doi.org/10.1038/s41598-020-77761-0 |
Sumario: | A better understanding of the structure of polymers at solid interfaces is crucial for designing various polymer nano-composite materials from structural materials to nanomaterials for use in industry. To this end, the first step is to obtain information on how synthetic polymer chains adsorb onto a solid surface. We closely followed the trajectory of a single polymer chain on the surface as a function of temperature using atomic force microscopy. Combining the results with a full-atomistic molecular dynamics simulation revealed that the chain became more rigid on the way to reaching a pseudo-equilibrium state, accompanied by a change in its local conformation from mainly loops to trains. This information will be useful for regulating the physical properties of polymers at the interface. |
---|