Cargando…

Dynamic constitutive model of frozen soil that considers the evolution of volume fraction of ice

A new constitutive model for frozen soils under high strain rate is developed. By taking the frozen soil as a composite material and considering the adiabatic temperature rise and interfacial debonding damage, the nonlinear dynamic response (NDR) of the frozen soil is predicted. At the same time, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Qijun, Su, Lijun, Zhu, Zhiwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708989/
https://www.ncbi.nlm.nih.gov/pubmed/33262426
http://dx.doi.org/10.1038/s41598-020-77955-6
Descripción
Sumario:A new constitutive model for frozen soils under high strain rate is developed. By taking the frozen soil as a composite material and considering the adiabatic temperature rise and interfacial debonding damage, the nonlinear dynamic response (NDR) of the frozen soil is predicted. At the same time, the relationship between instantaneous temperature and unfrozen water content is given, and an evolution rule of the volume fraction of ice particles is obtained. This relationship shows good agreement with experimental data. Using this new constitutive model, the stress–strain relationship of frozen soil under impact loading at temperatures of − 3 °C, − 8 °C, − 18 °C, and − 28 °C is calculated. There is good agreements between the results based on this new constitutive model and the data of dynamic impact.