Cargando…
COVID-19 Knowledge Extractor (COKE): a tool and a web portal to extract drug - target protein associations from the CORD-19 corpus of scientific publications on COVID-19
OBJECTIVE: The COVID-19 pandemic has catalyzed a widespread effort to identify drug candidates and biological targets of relevance to SARS-COV-2 infection, which resulted in large numbers of publications on this subject. We have built the COVID-19 Knowledge Extractor (COKE), a web application to ext...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
ChemRxiv
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709174/ https://www.ncbi.nlm.nih.gov/pubmed/33269341 http://dx.doi.org/10.26434/chemrxiv.13289222 |
Sumario: | OBJECTIVE: The COVID-19 pandemic has catalyzed a widespread effort to identify drug candidates and biological targets of relevance to SARS-COV-2 infection, which resulted in large numbers of publications on this subject. We have built the COVID-19 Knowledge Extractor (COKE), a web application to extract, curate, and annotate essential drug-target relationships from the research literature on COVID-19 to assist drug repurposing efforts. MATERIALS AND METHODS: SciBiteAI ontological tagging of the COVID Open Research Dataset (CORD-19), a repository of COVID-19 scientific publications, was employed to identify drug-target relationships. Entity identifiers were resolved through lookup routines using UniProt and DrugBank. A custom algorithm was used to identify co-occurrences of protein and drug terms, and confidence scores were calculated for each entity pair. RESULTS: COKE processing of the current CORD-19 database identified about 3,000 drug-protein pairs, including 29 unique proteins and 500 investigational, experimental, and approved drugs. Some of these drugs are presently undergoing clinical trials for COVID-19. DISCUSSION: The rapidly evolving situation concerning the COVID-19 pandemic has resulted in a dramatic growth of publications on this subject in a short period. These circumstances call for methods that can condense the literature into the key concepts and relationships necessary for insights into SARS-CoV-2 drug repurposing. CONCLUSION: The COKE repository and web application deliver key drug - target protein relationships to researchers studying SARS-CoV-2. COKE portal may provide comprehensive and critical information on studies concerning drug repurposing against COVID-19. COKE is freely available at https://coke.mml.unc.edu/ and the code is available at https://github.com/DnlRKorn/CoKE. |
---|