Cargando…
Socioeconomic inequalities in hypertension in Kenya: a decomposition analysis of 2015 Kenya STEPwise survey on non-communicable diseases risk factors
BACKGROUND: One in four Kenyans aged 18–69 years have raised blood pressure. Despite this high prevalence of hypertension and known association between socioeconomic status and hypertension, there is limited understanding of factors explaining inequalities in raised blood pressure in Kenya. Hence, w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709247/ https://www.ncbi.nlm.nih.gov/pubmed/33267846 http://dx.doi.org/10.1186/s12939-020-01321-1 |
Sumario: | BACKGROUND: One in four Kenyans aged 18–69 years have raised blood pressure. Despite this high prevalence of hypertension and known association between socioeconomic status and hypertension, there is limited understanding of factors explaining inequalities in raised blood pressure in Kenya. Hence, we quantified the socioeconomic inequality in hypertension in Kenya and decomposed the determinants contributing to such inequality. METHODS: We used data from the 2015 Kenya STEPwise survey for non-communicable diseases risk factors. We included 4422 respondents aged 18–69 years. We estimated the socioeconomic inequality using the concentration index (C) and decomposed the C using Wagstaff decomposition analysis. RESULTS: The overall concentration index of hypertension in Kenya was − 0.08 (95% CI: − 0.14, − 0.02; p = 0.005), showing socioeconomic inequalities in hypertension disfavouring the poor population. About half (47.1%) of the pro-rich inequalities in hypertension was explained by body mass index while 26.7% by socioeconomic factors (wealth index (10.4%), education (9.3%) and paid employment (7.0%)) and 17.6% by sociodemographic factors (female gender (10.5%), age (4.3%) and marital status (0.6%)). Regional differences explained 7.1% of the estimated inequality with the Central region alone explaining 6.0% of the observed inequality. Our model explained 99.7% of the estimated socioeconomic inequality in hypertension in Kenya with a small non-explained part of the inequality (− 0.0002). CONCLUSION: The present study shows substantial socioeconomic inequalities in hypertension in Kenya, mainly explained by metabolic risk factors (body mass index), individual health behaviours, and socioeconomic factors. Kenya needs gender- and equity-focused interventions to curb the rising burden of hypertension and inequalities in hypertension. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12939-020-01321-1. |
---|