Cargando…
Strategies to improve deep learning-based salivary gland segmentation
BACKGROUND: Deep learning-based delineation of organs-at-risk for radiotherapy purposes has been investigated to reduce the time-intensiveness and inter-/intra-observer variability associated with manual delineation. We systematically evaluated ways to improve the performance and reliability of deep...
Autores principales: | van Rooij, Ward, Dahele, Max, Nijhuis, Hanne, Slotman, Berend J., Verbakel, Wilko F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709305/ https://www.ncbi.nlm.nih.gov/pubmed/33261620 http://dx.doi.org/10.1186/s13014-020-01721-1 |
Ejemplares similares
-
Using Spatial Probability Maps to Highlight Potential Inaccuracies in Deep Learning-Based Contours: Facilitating Online Adaptive Radiation Therapy
por: van Rooij, Ward, et al.
Publicado: (2021) -
Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy
por: Strijbis, Victor I. J., et al.
Publicado: (2022) -
Markerless Real-Time 3-Dimensional kV Tracking of Lung Tumors During Free Breathing Stereotactic Radiation Therapy
por: de Bruin, Kimmie, et al.
Publicado: (2021) -
Single Ultra-High Dose Rate Proton Transmission Beam for Whole Breast FLASH-Irradiation: Quantification of FLASH-Dose and Relation with Beam Parameters
por: van Marlen, Patricia, et al.
Publicado: (2023) -
Single-fraction 34 Gy Lung Stereotactic Body Radiation Therapy Using Proton Transmission Beams: FLASH-dose Calculations and the Influence of Different Dose-rate Methods and Dose/Dose-rate Thresholds
por: van Marlen, Patricia, et al.
Publicado: (2022)