Cargando…
Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment
Bio-inspired solutions devised for autonomous underwater robots are currently being investigated by researchers worldwide as a way to improve propulsion. Despite efforts to harness the substantial potential payoffs of marine animal locomotion, biological system performance still has far to go. In or...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709489/ https://www.ncbi.nlm.nih.gov/pubmed/33007974 http://dx.doi.org/10.3390/biomimetics5040046 |
_version_ | 1783617761333739520 |
---|---|
author | Costa, Daniele Palmieri, Giacomo Palpacelli, Matteo-Claudio Scaradozzi, David Callegari, Massimo |
author_facet | Costa, Daniele Palmieri, Giacomo Palpacelli, Matteo-Claudio Scaradozzi, David Callegari, Massimo |
author_sort | Costa, Daniele |
collection | PubMed |
description | Bio-inspired solutions devised for autonomous underwater robots are currently being investigated by researchers worldwide as a way to improve propulsion. Despite efforts to harness the substantial potential payoffs of marine animal locomotion, biological system performance still has far to go. In order to address this very ambitious objective, the authors of this study designed and manufactured a series of ostraciiform swimming robots over the past three years. However, the pursuit of the maximum propulsive efficiency by which to maximize robot autonomy while maintaining acceptable maneuverability ultimately drove us to improve our design and move from ostraciiform to carangiform locomotion. In order to comply with the tail motion required by the aforementioned swimmers, the authors designed a transmission system capable of converting the continuous rotation of a single motor in the travelling wave-shaped undulations of a multijoint serial mechanism. The propulsive performance of the resulting thruster (i.e., the caudal fin), which constitutes the mechanism end effector, was investigated by means of computational fluid dynamics techniques. Finally, in order to compute the resulting motion of the robot, numerical predictions were integrated into a multibody model that also accounted for the mass distribution inside the robotic swimmer and the hydrodynamic forces resulting from the relative motion between its body and the surrounding fluid. Dynamic analysis allowed the performance of the robotic propulsion to be computed while in the cruising condition. |
format | Online Article Text |
id | pubmed-7709489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77094892020-12-03 Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment Costa, Daniele Palmieri, Giacomo Palpacelli, Matteo-Claudio Scaradozzi, David Callegari, Massimo Biomimetics (Basel) Article Bio-inspired solutions devised for autonomous underwater robots are currently being investigated by researchers worldwide as a way to improve propulsion. Despite efforts to harness the substantial potential payoffs of marine animal locomotion, biological system performance still has far to go. In order to address this very ambitious objective, the authors of this study designed and manufactured a series of ostraciiform swimming robots over the past three years. However, the pursuit of the maximum propulsive efficiency by which to maximize robot autonomy while maintaining acceptable maneuverability ultimately drove us to improve our design and move from ostraciiform to carangiform locomotion. In order to comply with the tail motion required by the aforementioned swimmers, the authors designed a transmission system capable of converting the continuous rotation of a single motor in the travelling wave-shaped undulations of a multijoint serial mechanism. The propulsive performance of the resulting thruster (i.e., the caudal fin), which constitutes the mechanism end effector, was investigated by means of computational fluid dynamics techniques. Finally, in order to compute the resulting motion of the robot, numerical predictions were integrated into a multibody model that also accounted for the mass distribution inside the robotic swimmer and the hydrodynamic forces resulting from the relative motion between its body and the surrounding fluid. Dynamic analysis allowed the performance of the robotic propulsion to be computed while in the cruising condition. MDPI 2020-09-30 /pmc/articles/PMC7709489/ /pubmed/33007974 http://dx.doi.org/10.3390/biomimetics5040046 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Costa, Daniele Palmieri, Giacomo Palpacelli, Matteo-Claudio Scaradozzi, David Callegari, Massimo Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment |
title | Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment |
title_full | Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment |
title_fullStr | Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment |
title_full_unstemmed | Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment |
title_short | Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment |
title_sort | design of a carangiform swimming robot through a multiphysics simulation environment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709489/ https://www.ncbi.nlm.nih.gov/pubmed/33007974 http://dx.doi.org/10.3390/biomimetics5040046 |
work_keys_str_mv | AT costadaniele designofacarangiformswimmingrobotthroughamultiphysicssimulationenvironment AT palmierigiacomo designofacarangiformswimmingrobotthroughamultiphysicssimulationenvironment AT palpacellimatteoclaudio designofacarangiformswimmingrobotthroughamultiphysicssimulationenvironment AT scaradozzidavid designofacarangiformswimmingrobotthroughamultiphysicssimulationenvironment AT callegarimassimo designofacarangiformswimmingrobotthroughamultiphysicssimulationenvironment |