Cargando…
Challenging One Model With Many Stimuli: Simulating Responses in the Inferior Colliculus
Existing models to explain human psychophysics or neural responses are typically designed for a specific stimulus type and often fail for other stimuli. The ultimate goal for a neural model is to simulate responses to many stimuli, which may provide better insights into neural mechanisms. We tested...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709792/ https://www.ncbi.nlm.nih.gov/pubmed/33273896 http://dx.doi.org/10.3813/aaa.919249 |
Sumario: | Existing models to explain human psychophysics or neural responses are typically designed for a specific stimulus type and often fail for other stimuli. The ultimate goal for a neural model is to simulate responses to many stimuli, which may provide better insights into neural mechanisms. We tested the ability of modified same-frequency inhibition-excitation models for inferior colliculus neurons to simulate individual neuron responses to both amplitude-modulated sounds and tone-in-noise stimuli. Modifications to the model were guided by receptive fields computed with 2nd-order Wiener kernel analysis. This approach successfully simulated many individual neurons’ responses to different types of stimuli. Other neurons suggest limitations and future directions for modeling efforts. |
---|