Cargando…
Message in a bottle: Open source technology to track the movement of plastic pollution
Rivers worldwide are now acting as major transport pathways for plastic pollution and discharge large quantities of waste into the ocean. Previous oceanographic modelling and current drifter data have been used to predict the movement and accumulation of plastic pollution in the marine environment,...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710111/ https://www.ncbi.nlm.nih.gov/pubmed/33264309 http://dx.doi.org/10.1371/journal.pone.0242459 |
_version_ | 1783617882145423360 |
---|---|
author | Duncan, Emily M. Davies, Alasdair Brooks, Amy Chowdhury, Gawsia Wahidunnessa Godley, Brendan J. Jambeck, Jenna Maddalene, Taylor Napper, Imogen Nelms, Sarah E. Rackstraw, Craig Koldewey, Heather |
author_facet | Duncan, Emily M. Davies, Alasdair Brooks, Amy Chowdhury, Gawsia Wahidunnessa Godley, Brendan J. Jambeck, Jenna Maddalene, Taylor Napper, Imogen Nelms, Sarah E. Rackstraw, Craig Koldewey, Heather |
author_sort | Duncan, Emily M. |
collection | PubMed |
description | Rivers worldwide are now acting as major transport pathways for plastic pollution and discharge large quantities of waste into the ocean. Previous oceanographic modelling and current drifter data have been used to predict the movement and accumulation of plastic pollution in the marine environment, but our understanding of the transport and fate through riparian systems is still largely unknown. Here we undertook a proof of concept study by applying open source tracking technology (both GPS (Global Positing System) cellular networks and satellite technology), which have been successfully used in many animal movement studies, to track the movements of individual plastic litter items (500 ml PET (polyethylene terephthalate) drinks bottles) through the Ganges River system (known as the Ganga in India and the Padma and Meghna in Bangladesh, hereafter known as the Ganges) and the Bay of Bengal. Deployed tags were successfully tracked through the Ganges river system and into the Bay of Bengal marine system. The “bottle tags” were designed and built (e.g. shape, size, buoyancy) to replicate true movement patterns of a plastic bottle. The maximum distance tracked to date is 2845 km over a period of 94 days. We discuss lessons learnt from the development of these plastic litter tags, and outline how the potential widespread use of this open source technology has the ability to significantly increase understanding of the location of accumulation areas and the timing of large inputs of plastic pollution into the aquatic system. Furthermore, “bottle tags” may act as a powerful tool for stimulating social behaviour change, informing science-based policy, and as valuable educational outreach tools for public awareness. |
format | Online Article Text |
id | pubmed-7710111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77101112020-12-03 Message in a bottle: Open source technology to track the movement of plastic pollution Duncan, Emily M. Davies, Alasdair Brooks, Amy Chowdhury, Gawsia Wahidunnessa Godley, Brendan J. Jambeck, Jenna Maddalene, Taylor Napper, Imogen Nelms, Sarah E. Rackstraw, Craig Koldewey, Heather PLoS One Research Article Rivers worldwide are now acting as major transport pathways for plastic pollution and discharge large quantities of waste into the ocean. Previous oceanographic modelling and current drifter data have been used to predict the movement and accumulation of plastic pollution in the marine environment, but our understanding of the transport and fate through riparian systems is still largely unknown. Here we undertook a proof of concept study by applying open source tracking technology (both GPS (Global Positing System) cellular networks and satellite technology), which have been successfully used in many animal movement studies, to track the movements of individual plastic litter items (500 ml PET (polyethylene terephthalate) drinks bottles) through the Ganges River system (known as the Ganga in India and the Padma and Meghna in Bangladesh, hereafter known as the Ganges) and the Bay of Bengal. Deployed tags were successfully tracked through the Ganges river system and into the Bay of Bengal marine system. The “bottle tags” were designed and built (e.g. shape, size, buoyancy) to replicate true movement patterns of a plastic bottle. The maximum distance tracked to date is 2845 km over a period of 94 days. We discuss lessons learnt from the development of these plastic litter tags, and outline how the potential widespread use of this open source technology has the ability to significantly increase understanding of the location of accumulation areas and the timing of large inputs of plastic pollution into the aquatic system. Furthermore, “bottle tags” may act as a powerful tool for stimulating social behaviour change, informing science-based policy, and as valuable educational outreach tools for public awareness. Public Library of Science 2020-12-02 /pmc/articles/PMC7710111/ /pubmed/33264309 http://dx.doi.org/10.1371/journal.pone.0242459 Text en © 2020 Duncan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Duncan, Emily M. Davies, Alasdair Brooks, Amy Chowdhury, Gawsia Wahidunnessa Godley, Brendan J. Jambeck, Jenna Maddalene, Taylor Napper, Imogen Nelms, Sarah E. Rackstraw, Craig Koldewey, Heather Message in a bottle: Open source technology to track the movement of plastic pollution |
title | Message in a bottle: Open source technology to track the movement of plastic pollution |
title_full | Message in a bottle: Open source technology to track the movement of plastic pollution |
title_fullStr | Message in a bottle: Open source technology to track the movement of plastic pollution |
title_full_unstemmed | Message in a bottle: Open source technology to track the movement of plastic pollution |
title_short | Message in a bottle: Open source technology to track the movement of plastic pollution |
title_sort | message in a bottle: open source technology to track the movement of plastic pollution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710111/ https://www.ncbi.nlm.nih.gov/pubmed/33264309 http://dx.doi.org/10.1371/journal.pone.0242459 |
work_keys_str_mv | AT duncanemilym messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT daviesalasdair messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT brooksamy messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT chowdhurygawsiawahidunnessa messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT godleybrendanj messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT jambeckjenna messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT maddalenetaylor messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT napperimogen messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT nelmssarahe messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT rackstrawcraig messageinabottleopensourcetechnologytotrackthemovementofplasticpollution AT koldeweyheather messageinabottleopensourcetechnologytotrackthemovementofplasticpollution |