Cargando…
Tackling the challenges of bioimage analysis
Using multiple human annotators and ensembles of trained networks can improve the performance of deep-learning methods in research.
Autor principal: | Pelt, Daniël M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710355/ https://www.ncbi.nlm.nih.gov/pubmed/33264089 http://dx.doi.org/10.7554/eLife.64384 |
Ejemplares similares
-
On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
por: Segebarth, Dennis, et al.
Publicado: (2020) -
Networking tackles the LHC challenge
por: Foster, D
Publicado: (2006) -
The intractable challenge of evaluating cattle vaccination as a control for bovine Tuberculosis
por: Conlan, Andrew James Kerr, et al.
Publicado: (2018) -
PARROT is a flexible recurrent neural network framework for analysis of large protein datasets
por: Griffith, Daniel, et al.
Publicado: (2021) -
The 3rd International Conference on Bioimaging
Publicado: (2016)