Cargando…
On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710359/ https://www.ncbi.nlm.nih.gov/pubmed/33074102 http://dx.doi.org/10.7554/eLife.59780 |
_version_ | 1783617929375383552 |
---|---|
author | Segebarth, Dennis Griebel, Matthias Stein, Nikolai von Collenberg, Cora R Martin, Corinna Fiedler, Dominik Comeras, Lucas B Sah, Anupam Schoeffler, Victoria Lüffe, Teresa Dürr, Alexander Gupta, Rohini Sasi, Manju Lillesaar, Christina Lange, Maren D Tasan, Ramon O Singewald, Nicolas Pape, Hans-Christian Flath, Christoph M Blum, Robert |
author_facet | Segebarth, Dennis Griebel, Matthias Stein, Nikolai von Collenberg, Cora R Martin, Corinna Fiedler, Dominik Comeras, Lucas B Sah, Anupam Schoeffler, Victoria Lüffe, Teresa Dürr, Alexander Gupta, Rohini Sasi, Manju Lillesaar, Christina Lange, Maren D Tasan, Ramon O Singewald, Nicolas Pape, Hans-Christian Flath, Christoph M Blum, Robert |
author_sort | Segebarth, Dennis |
collection | PubMed |
description | Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses. |
format | Online Article Text |
id | pubmed-7710359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-77103592020-12-07 On the objectivity, reliability, and validity of deep learning enabled bioimage analyses Segebarth, Dennis Griebel, Matthias Stein, Nikolai von Collenberg, Cora R Martin, Corinna Fiedler, Dominik Comeras, Lucas B Sah, Anupam Schoeffler, Victoria Lüffe, Teresa Dürr, Alexander Gupta, Rohini Sasi, Manju Lillesaar, Christina Lange, Maren D Tasan, Ramon O Singewald, Nicolas Pape, Hans-Christian Flath, Christoph M Blum, Robert eLife Computational and Systems Biology Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses. eLife Sciences Publications, Ltd 2020-10-19 /pmc/articles/PMC7710359/ /pubmed/33074102 http://dx.doi.org/10.7554/eLife.59780 Text en © 2020, Segebarth et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Computational and Systems Biology Segebarth, Dennis Griebel, Matthias Stein, Nikolai von Collenberg, Cora R Martin, Corinna Fiedler, Dominik Comeras, Lucas B Sah, Anupam Schoeffler, Victoria Lüffe, Teresa Dürr, Alexander Gupta, Rohini Sasi, Manju Lillesaar, Christina Lange, Maren D Tasan, Ramon O Singewald, Nicolas Pape, Hans-Christian Flath, Christoph M Blum, Robert On the objectivity, reliability, and validity of deep learning enabled bioimage analyses |
title | On the objectivity, reliability, and validity of deep learning enabled bioimage analyses |
title_full | On the objectivity, reliability, and validity of deep learning enabled bioimage analyses |
title_fullStr | On the objectivity, reliability, and validity of deep learning enabled bioimage analyses |
title_full_unstemmed | On the objectivity, reliability, and validity of deep learning enabled bioimage analyses |
title_short | On the objectivity, reliability, and validity of deep learning enabled bioimage analyses |
title_sort | on the objectivity, reliability, and validity of deep learning enabled bioimage analyses |
topic | Computational and Systems Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710359/ https://www.ncbi.nlm.nih.gov/pubmed/33074102 http://dx.doi.org/10.7554/eLife.59780 |
work_keys_str_mv | AT segebarthdennis ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT griebelmatthias ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT steinnikolai ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT voncollenbergcorar ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT martincorinna ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT fiedlerdominik ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT comeraslucasb ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT sahanupam ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT schoefflervictoria ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT luffeteresa ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT durralexander ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT guptarohini ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT sasimanju ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT lillesaarchristina ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT langemarend ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT tasanramono ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT singewaldnicolas ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT papehanschristian ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT flathchristophm ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses AT blumrobert ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses |