Cargando…

On the objectivity, reliability, and validity of deep learning enabled bioimage analyses

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is...

Descripción completa

Detalles Bibliográficos
Autores principales: Segebarth, Dennis, Griebel, Matthias, Stein, Nikolai, von Collenberg, Cora R, Martin, Corinna, Fiedler, Dominik, Comeras, Lucas B, Sah, Anupam, Schoeffler, Victoria, Lüffe, Teresa, Dürr, Alexander, Gupta, Rohini, Sasi, Manju, Lillesaar, Christina, Lange, Maren D, Tasan, Ramon O, Singewald, Nicolas, Pape, Hans-Christian, Flath, Christoph M, Blum, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710359/
https://www.ncbi.nlm.nih.gov/pubmed/33074102
http://dx.doi.org/10.7554/eLife.59780
_version_ 1783617929375383552
author Segebarth, Dennis
Griebel, Matthias
Stein, Nikolai
von Collenberg, Cora R
Martin, Corinna
Fiedler, Dominik
Comeras, Lucas B
Sah, Anupam
Schoeffler, Victoria
Lüffe, Teresa
Dürr, Alexander
Gupta, Rohini
Sasi, Manju
Lillesaar, Christina
Lange, Maren D
Tasan, Ramon O
Singewald, Nicolas
Pape, Hans-Christian
Flath, Christoph M
Blum, Robert
author_facet Segebarth, Dennis
Griebel, Matthias
Stein, Nikolai
von Collenberg, Cora R
Martin, Corinna
Fiedler, Dominik
Comeras, Lucas B
Sah, Anupam
Schoeffler, Victoria
Lüffe, Teresa
Dürr, Alexander
Gupta, Rohini
Sasi, Manju
Lillesaar, Christina
Lange, Maren D
Tasan, Ramon O
Singewald, Nicolas
Pape, Hans-Christian
Flath, Christoph M
Blum, Robert
author_sort Segebarth, Dennis
collection PubMed
description Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.
format Online
Article
Text
id pubmed-7710359
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-77103592020-12-07 On the objectivity, reliability, and validity of deep learning enabled bioimage analyses Segebarth, Dennis Griebel, Matthias Stein, Nikolai von Collenberg, Cora R Martin, Corinna Fiedler, Dominik Comeras, Lucas B Sah, Anupam Schoeffler, Victoria Lüffe, Teresa Dürr, Alexander Gupta, Rohini Sasi, Manju Lillesaar, Christina Lange, Maren D Tasan, Ramon O Singewald, Nicolas Pape, Hans-Christian Flath, Christoph M Blum, Robert eLife Computational and Systems Biology Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses. eLife Sciences Publications, Ltd 2020-10-19 /pmc/articles/PMC7710359/ /pubmed/33074102 http://dx.doi.org/10.7554/eLife.59780 Text en © 2020, Segebarth et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Segebarth, Dennis
Griebel, Matthias
Stein, Nikolai
von Collenberg, Cora R
Martin, Corinna
Fiedler, Dominik
Comeras, Lucas B
Sah, Anupam
Schoeffler, Victoria
Lüffe, Teresa
Dürr, Alexander
Gupta, Rohini
Sasi, Manju
Lillesaar, Christina
Lange, Maren D
Tasan, Ramon O
Singewald, Nicolas
Pape, Hans-Christian
Flath, Christoph M
Blum, Robert
On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
title On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
title_full On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
title_fullStr On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
title_full_unstemmed On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
title_short On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
title_sort on the objectivity, reliability, and validity of deep learning enabled bioimage analyses
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710359/
https://www.ncbi.nlm.nih.gov/pubmed/33074102
http://dx.doi.org/10.7554/eLife.59780
work_keys_str_mv AT segebarthdennis ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT griebelmatthias ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT steinnikolai ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT voncollenbergcorar ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT martincorinna ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT fiedlerdominik ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT comeraslucasb ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT sahanupam ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT schoefflervictoria ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT luffeteresa ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT durralexander ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT guptarohini ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT sasimanju ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT lillesaarchristina ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT langemarend ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT tasanramono ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT singewaldnicolas ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT papehanschristian ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT flathchristophm ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses
AT blumrobert ontheobjectivityreliabilityandvalidityofdeeplearningenabledbioimageanalyses