Cargando…
An Efficient and Effective Model to Handle Missing Data in Classification
Missing data is one of the most important causes in reduction of classification accuracy. Many real datasets suffer from missing values, especially in medical sciences. Imputation is a common way to deal with incomplete datasets. There are various imputation methods that can be applied, and the choi...
Autores principales: | Mehrabani-Zeinabad, Kamran, Doostfatemeh, Marziyeh, Ayatollahi, Seyyed Mohammad Taghi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710403/ https://www.ncbi.nlm.nih.gov/pubmed/33299878 http://dx.doi.org/10.1155/2020/8810143 |
Ejemplares similares
-
Assessing the effect of child’s gender on their father–mother perception of the PedsQL™ 4.0 questionnaire: an iterative hybrid ordinal logistic regression/item response theory approach with Monte Carlo simulation
por: Doostfatemeh, Marziyeh, et al.
Publicado: (2020) -
A hierarchical Bayesian approach for handling missing classification data
por: Ketz, Alison C., et al.
Publicado: (2019) -
The Reliability of Classification of Terminal Nodes in GUIDE Decision Tree to Predict the Nonalcoholic Fatty Liver Disease
por: Birjandi, Mehdi, et al.
Publicado: (2016) -
A Proposed Approach for Joint Modeling of the Longitudinal and Time-To-Event Data in Heterogeneous Populations: An Application to HIV/AIDS's Disease
por: Roustaei, Narges, et al.
Publicado: (2018) -
The prevention and handling of the missing data
por: Kang, Hyun
Publicado: (2013)