Cargando…
Outlier-SMOTE: A refined oversampling technique for improved detection of COVID-19
Almost every dataset these days continually faces the predicament of class imbalance. It is difficult to train classifiers on these types of data as they become biased towards a set of classes, hence leading to reduction in classifier performance. This setback is often tackled by the use of various...
Autores principales: | Turlapati, Venkata Pavan Kumar, Prusty, Manas Ranjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710484/ https://www.ncbi.nlm.nih.gov/pubmed/33289013 http://dx.doi.org/10.1016/j.ibmed.2020.100023 |
Ejemplares similares
-
An Oversampling Method of Unbalanced Data for Mechanical Fault Diagnosis Based on MeanRadius-SMOTE
por: Duan, Feng, et al.
Publicado: (2022) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
On the Performance of Oversampling Techniques for Class Imbalance Problems
por: Kong, Jiawen, et al.
Publicado: (2020) -
Network intrusion detection using oversampling technique and machine learning algorithms
por: Ahmed, Hafiza Anisa, et al.
Publicado: (2022) -
Malicious Domain Detection Based on K-means and SMOTE
por: Wang, Qing, et al.
Publicado: (2020)