Cargando…

Functionally-informed fine-mapping and polygenic localization of complex trait heritability

Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome—not just genome-wide significant loci—to specify prior probabilities for fin...

Descripción completa

Detalles Bibliográficos
Autores principales: Weissbrod, Omer, Hormozdiari, Farhad, Benner, Christian, Cui, Ran, Ulirsch, Jacob, Gazal, Steven, Schoech, Armin P., van de Geijn, Bryce, Reshef, Yakir, Márquez-Luna, Carla, O’Connor, Luke, Pirinen, Matti, Finucane, Hilary K., Price, Alkes L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710571/
https://www.ncbi.nlm.nih.gov/pubmed/33199916
http://dx.doi.org/10.1038/s41588-020-00735-5
_version_ 1783617971220905984
author Weissbrod, Omer
Hormozdiari, Farhad
Benner, Christian
Cui, Ran
Ulirsch, Jacob
Gazal, Steven
Schoech, Armin P.
van de Geijn, Bryce
Reshef, Yakir
Márquez-Luna, Carla
O’Connor, Luke
Pirinen, Matti
Finucane, Hilary K.
Price, Alkes L.
author_facet Weissbrod, Omer
Hormozdiari, Farhad
Benner, Christian
Cui, Ran
Ulirsch, Jacob
Gazal, Steven
Schoech, Armin P.
van de Geijn, Bryce
Reshef, Yakir
Márquez-Luna, Carla
O’Connor, Luke
Pirinen, Matti
Finucane, Hilary K.
Price, Alkes L.
author_sort Weissbrod, Omer
collection PubMed
description Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome—not just genome-wide significant loci—to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simulations, PolyFun+SuSiE and PolyFun+FINEMAP were well-calibrated and identified >20% more variants with posterior causal probability >0.95 than their non-functionally informed counterparts. In analyses of 49 UK Biobank traits (average N=318K), PolyFun+SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement vs. SuSiE. We used posterior mean per-SNP heritabilities from PolyFun+SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures.
format Online
Article
Text
id pubmed-7710571
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-77105712021-05-16 Functionally-informed fine-mapping and polygenic localization of complex trait heritability Weissbrod, Omer Hormozdiari, Farhad Benner, Christian Cui, Ran Ulirsch, Jacob Gazal, Steven Schoech, Armin P. van de Geijn, Bryce Reshef, Yakir Márquez-Luna, Carla O’Connor, Luke Pirinen, Matti Finucane, Hilary K. Price, Alkes L. Nat Genet Article Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome—not just genome-wide significant loci—to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simulations, PolyFun+SuSiE and PolyFun+FINEMAP were well-calibrated and identified >20% more variants with posterior causal probability >0.95 than their non-functionally informed counterparts. In analyses of 49 UK Biobank traits (average N=318K), PolyFun+SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement vs. SuSiE. We used posterior mean per-SNP heritabilities from PolyFun+SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures. 2020-11-16 2020-12 /pmc/articles/PMC7710571/ /pubmed/33199916 http://dx.doi.org/10.1038/s41588-020-00735-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Weissbrod, Omer
Hormozdiari, Farhad
Benner, Christian
Cui, Ran
Ulirsch, Jacob
Gazal, Steven
Schoech, Armin P.
van de Geijn, Bryce
Reshef, Yakir
Márquez-Luna, Carla
O’Connor, Luke
Pirinen, Matti
Finucane, Hilary K.
Price, Alkes L.
Functionally-informed fine-mapping and polygenic localization of complex trait heritability
title Functionally-informed fine-mapping and polygenic localization of complex trait heritability
title_full Functionally-informed fine-mapping and polygenic localization of complex trait heritability
title_fullStr Functionally-informed fine-mapping and polygenic localization of complex trait heritability
title_full_unstemmed Functionally-informed fine-mapping and polygenic localization of complex trait heritability
title_short Functionally-informed fine-mapping and polygenic localization of complex trait heritability
title_sort functionally-informed fine-mapping and polygenic localization of complex trait heritability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710571/
https://www.ncbi.nlm.nih.gov/pubmed/33199916
http://dx.doi.org/10.1038/s41588-020-00735-5
work_keys_str_mv AT weissbrodomer functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT hormozdiarifarhad functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT bennerchristian functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT cuiran functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT ulirschjacob functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT gazalsteven functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT schoecharminp functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT vandegeijnbryce functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT reshefyakir functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT marquezlunacarla functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT oconnorluke functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT pirinenmatti functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT finucanehilaryk functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability
AT pricealkesl functionallyinformedfinemappingandpolygeniclocalizationofcomplextraitheritability