Cargando…
Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
Improving the accessibility of ions in the electrodes of electrochemical energy storage devices is vital for charge storage and rate performance. In particular, the kinetics of ion transport in organic electrolytes is slow, especially at low operating temperatures. Herein, we report a new type of MX...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710708/ https://www.ncbi.nlm.nih.gov/pubmed/33268791 http://dx.doi.org/10.1038/s41467-020-19992-3 |
_version_ | 1783617991619903488 |
---|---|
author | Gao, Xiang Du, Xuan Mathis, Tyler S. Zhang, Mengmeng Wang, Xuehang Shui, Jianglan Gogotsi, Yury Xu, Ming |
author_facet | Gao, Xiang Du, Xuan Mathis, Tyler S. Zhang, Mengmeng Wang, Xuehang Shui, Jianglan Gogotsi, Yury Xu, Ming |
author_sort | Gao, Xiang |
collection | PubMed |
description | Improving the accessibility of ions in the electrodes of electrochemical energy storage devices is vital for charge storage and rate performance. In particular, the kinetics of ion transport in organic electrolytes is slow, especially at low operating temperatures. Herein, we report a new type of MXene-carbon nanotube (CNT) composite electrode that maximizes ion accessibility resulting in exceptional rate performance at low temperatures. The improved ion transport at low temperatures is made possible by breaking the conventional horizontal alignment of the two-dimensional layers of the MXene Ti(3)C(2) by using specially designed knotted CNTs. The large, knot-like structures in the knotted CNTs prevent the usual restacking of the Ti(3)C(2) flakes and create fast ion transport pathways. The MXene-knotted CNT composite electrodes achieve high capacitance (up to 130 F g(−1) (276 F cm(−3))) in organic electrolytes with high capacitance retention over a wide scan rate range of 10 mV s(−1) to 10 V s(−1). This study is also the first report utilizing MXene-based supercapacitors at low temperatures (down to −60 °C). |
format | Online Article Text |
id | pubmed-7710708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-77107082020-12-03 Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage Gao, Xiang Du, Xuan Mathis, Tyler S. Zhang, Mengmeng Wang, Xuehang Shui, Jianglan Gogotsi, Yury Xu, Ming Nat Commun Article Improving the accessibility of ions in the electrodes of electrochemical energy storage devices is vital for charge storage and rate performance. In particular, the kinetics of ion transport in organic electrolytes is slow, especially at low operating temperatures. Herein, we report a new type of MXene-carbon nanotube (CNT) composite electrode that maximizes ion accessibility resulting in exceptional rate performance at low temperatures. The improved ion transport at low temperatures is made possible by breaking the conventional horizontal alignment of the two-dimensional layers of the MXene Ti(3)C(2) by using specially designed knotted CNTs. The large, knot-like structures in the knotted CNTs prevent the usual restacking of the Ti(3)C(2) flakes and create fast ion transport pathways. The MXene-knotted CNT composite electrodes achieve high capacitance (up to 130 F g(−1) (276 F cm(−3))) in organic electrolytes with high capacitance retention over a wide scan rate range of 10 mV s(−1) to 10 V s(−1). This study is also the first report utilizing MXene-based supercapacitors at low temperatures (down to −60 °C). Nature Publishing Group UK 2020-12-02 /pmc/articles/PMC7710708/ /pubmed/33268791 http://dx.doi.org/10.1038/s41467-020-19992-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Gao, Xiang Du, Xuan Mathis, Tyler S. Zhang, Mengmeng Wang, Xuehang Shui, Jianglan Gogotsi, Yury Xu, Ming Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage |
title | Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage |
title_full | Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage |
title_fullStr | Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage |
title_full_unstemmed | Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage |
title_short | Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage |
title_sort | maximizing ion accessibility in mxene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710708/ https://www.ncbi.nlm.nih.gov/pubmed/33268791 http://dx.doi.org/10.1038/s41467-020-19992-3 |
work_keys_str_mv | AT gaoxiang maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage AT duxuan maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage AT mathistylers maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage AT zhangmengmeng maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage AT wangxuehang maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage AT shuijianglan maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage AT gogotsiyury maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage AT xuming maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage |