Cargando…

Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage

Improving the accessibility of ions in the electrodes of electrochemical energy storage devices is vital for charge storage and rate performance. In particular, the kinetics of ion transport in organic electrolytes is slow, especially at low operating temperatures. Herein, we report a new type of MX...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Xiang, Du, Xuan, Mathis, Tyler S., Zhang, Mengmeng, Wang, Xuehang, Shui, Jianglan, Gogotsi, Yury, Xu, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710708/
https://www.ncbi.nlm.nih.gov/pubmed/33268791
http://dx.doi.org/10.1038/s41467-020-19992-3
_version_ 1783617991619903488
author Gao, Xiang
Du, Xuan
Mathis, Tyler S.
Zhang, Mengmeng
Wang, Xuehang
Shui, Jianglan
Gogotsi, Yury
Xu, Ming
author_facet Gao, Xiang
Du, Xuan
Mathis, Tyler S.
Zhang, Mengmeng
Wang, Xuehang
Shui, Jianglan
Gogotsi, Yury
Xu, Ming
author_sort Gao, Xiang
collection PubMed
description Improving the accessibility of ions in the electrodes of electrochemical energy storage devices is vital for charge storage and rate performance. In particular, the kinetics of ion transport in organic electrolytes is slow, especially at low operating temperatures. Herein, we report a new type of MXene-carbon nanotube (CNT) composite electrode that maximizes ion accessibility resulting in exceptional rate performance at low temperatures. The improved ion transport at low temperatures is made possible by breaking the conventional horizontal alignment of the two-dimensional layers of the MXene Ti(3)C(2) by using specially designed knotted CNTs. The large, knot-like structures in the knotted CNTs prevent the usual restacking of the Ti(3)C(2) flakes and create fast ion transport pathways. The MXene-knotted CNT composite electrodes achieve high capacitance (up to 130 F g(−1) (276 F cm(−3))) in organic electrolytes with high capacitance retention over a wide scan rate range of 10 mV s(−1) to 10 V s(−1). This study is also the first report utilizing MXene-based supercapacitors at low temperatures (down to −60 °C).
format Online
Article
Text
id pubmed-7710708
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-77107082020-12-03 Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage Gao, Xiang Du, Xuan Mathis, Tyler S. Zhang, Mengmeng Wang, Xuehang Shui, Jianglan Gogotsi, Yury Xu, Ming Nat Commun Article Improving the accessibility of ions in the electrodes of electrochemical energy storage devices is vital for charge storage and rate performance. In particular, the kinetics of ion transport in organic electrolytes is slow, especially at low operating temperatures. Herein, we report a new type of MXene-carbon nanotube (CNT) composite electrode that maximizes ion accessibility resulting in exceptional rate performance at low temperatures. The improved ion transport at low temperatures is made possible by breaking the conventional horizontal alignment of the two-dimensional layers of the MXene Ti(3)C(2) by using specially designed knotted CNTs. The large, knot-like structures in the knotted CNTs prevent the usual restacking of the Ti(3)C(2) flakes and create fast ion transport pathways. The MXene-knotted CNT composite electrodes achieve high capacitance (up to 130 F g(−1) (276 F cm(−3))) in organic electrolytes with high capacitance retention over a wide scan rate range of 10 mV s(−1) to 10 V s(−1). This study is also the first report utilizing MXene-based supercapacitors at low temperatures (down to −60 °C). Nature Publishing Group UK 2020-12-02 /pmc/articles/PMC7710708/ /pubmed/33268791 http://dx.doi.org/10.1038/s41467-020-19992-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gao, Xiang
Du, Xuan
Mathis, Tyler S.
Zhang, Mengmeng
Wang, Xuehang
Shui, Jianglan
Gogotsi, Yury
Xu, Ming
Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
title Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
title_full Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
title_fullStr Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
title_full_unstemmed Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
title_short Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
title_sort maximizing ion accessibility in mxene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710708/
https://www.ncbi.nlm.nih.gov/pubmed/33268791
http://dx.doi.org/10.1038/s41467-020-19992-3
work_keys_str_mv AT gaoxiang maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage
AT duxuan maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage
AT mathistylers maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage
AT zhangmengmeng maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage
AT wangxuehang maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage
AT shuijianglan maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage
AT gogotsiyury maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage
AT xuming maximizingionaccessibilityinmxeneknottedcarbonnanotubecompositeelectrodesforhighrateelectrochemicalenergystorage