Cargando…
An improved deep learning model for predicting daily PM2.5 concentration
Over the past few decades, air pollution has caused serious damage to public health. Therefore, making accurate predictions of PM2.5 is a crucial task. Due to the transportation of air pollutants among areas, the PM2.5 concentration is strongly spatiotemporal correlated. However, the distribution of...
Autores principales: | Xiao, Fei, Yang, Mei, Fan, Hong, Fan, Guanghui, Al-qaness, Mohammed A. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710732/ https://www.ncbi.nlm.nih.gov/pubmed/33268885 http://dx.doi.org/10.1038/s41598-020-77757-w |
Ejemplares similares
-
The concentration-response relation between PM(2.5) and daily deaths.
por: Schwartz, Joel, et al.
Publicado: (2002) -
Fusion of Environmental Sensing on PM(2.5) and Deep Learning on Vehicle Detecting for Acquiring Roadside PM(2.5) Concentration Increments
por: Wang, Wen-Cheng Vincent, et al.
Publicado: (2020) -
Tracking Daily Concentrations
of PM(2.5) Chemical
Composition in China since 2000
por: Liu, Shigan, et al.
Publicado: (2022) -
Prediction of daily PM(2.5) concentration in China using partial differential equations
por: Wang, Yufang, et al.
Publicado: (2018) -
Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components
por: Zhang, Tianyu, et al.
Publicado: (2020)