Cargando…
Gelatine nanostructured lipid carrier encapsulated FGF15 inhibits autophagy and improves recovery in spinal cord injury
Gelatine nanostructured lipid carriers (GNLs) have attracted increasing attention due to their biodegradable status and capacity to capture various biologically active compounds. Many studies demonstrated that fibroblast growth factor therapies after spinal cord injury (SCI) can be used in the futur...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710748/ https://www.ncbi.nlm.nih.gov/pubmed/33298870 http://dx.doi.org/10.1038/s41420-020-00367-y |
Sumario: | Gelatine nanostructured lipid carriers (GNLs) have attracted increasing attention due to their biodegradable status and capacity to capture various biologically active compounds. Many studies demonstrated that fibroblast growth factor therapies after spinal cord injury (SCI) can be used in the future for the recovery of neurons. In this study, the therapeutic effects of GNL-encapsulated fibroblast growth factor 15 (FGF15) and FGF15 were compared in SCI. The FGF15-GNLs had 88.17 ± 1.22% encapsulation efficiency and 4.82 ± 0.12% loading capacity. The effects of FGF15-GNLs and FGF15 were assessed based on the Basso–Beattie–Bresnahan (BBB) locomotion scale, inclined plane test and footprint analysis. Immunofluorescent staining was used to identify the expression of autophagy-associated proteins, GFAP (glial fibrillary acidic protein) and neurofilament 200 (NF200). FGF15-GNLs use enhanced the repair after SCI compared to the effect of FGF15. The suppression of autophagy-associated proteins LC3-II and beclin-1, and p62 enhancement by FGF15-GNLs treatment were more pronounced. Thus, the effects of FGF15-GNLs on the recovery after SCI are related to the inhibition of autophagy and glial scar, and promotion of nerve regeneration in SCI. |
---|