Cargando…
Activation of LacZ gene in Escherichia coli DH5α via α-complementation mechanism for β-galactosidase production and its biochemical characterizations
BACKGROUND: Plasmid propagation in recombination strains such as Escherichia coli DH5α is regarded as a beneficial instrument for stable amplification of the DNA materials. Here, we show trans-conjugation of pGEM-T cloning vector (modified Promega PCR product cloning vector with tra genes, transposa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710787/ https://www.ncbi.nlm.nih.gov/pubmed/33263861 http://dx.doi.org/10.1186/s43141-020-00096-w |
Sumario: | BACKGROUND: Plasmid propagation in recombination strains such as Escherichia coli DH5α is regarded as a beneficial instrument for stable amplification of the DNA materials. Here, we show trans-conjugation of pGEM-T cloning vector (modified Promega PCR product cloning vector with tra genes, transposable element (Tn5)) and M13 sequence via α-complementation mechanism in order to activate β-d-galactosidase gene in DH5α strain (non-lactose-fermenting host). RESULTS: Trans-conjugation with pGEM-T allows correction of LacZ gene deletion through Tn5, and successful trans-conjugants in DH5α host cells can be able to produce active enzyme, thus described as lactose fermenting strain. The intracellular β-galactosidase was subjected to precipitation by ammonium sulfate and subsequently gel filtration, and the purified enzyme showed a molecular weight of approximately 72-kDa sodium dodecyl sulfate-polyacrylamid gel electrophoresis. The purified enzyme activity showed an optimal pH and temperature of 7.5 and 40 °C, respectively; it had a high stability within pH 6–8.5 and moderate thermal stability up to 50 °C. CONCLUSION: Trans-conjugant of E. coli DH5α- lacZ∆M15 was successfully implemented. UV mutagenesis of the potent trans-conjugant isolate provides an improvement of the enzyme productivity. The enzymatic competitive inhibition by d-galactose and hydrolysis of lactose at ambient temperatures could make this enzyme a promising candidate for use in the dairy industry. |
---|