Cargando…

Robustness of Brain Structural Networks Is Affected in Cognitively Impaired MS Patients

The robustness of brain structural networks, estimated from diffusion MRI data, may be relevant to cognition. We investigate whether measures of network robustness, such as Ollivier-Ricci curvature, can explain cognitive impairment in multiple sclerosis (MS). We assessed whether local (i.e., cortica...

Descripción completa

Detalles Bibliográficos
Autores principales: Farooq, Hamza, Lenglet, Christophe, Nelson, Flavia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710804/
https://www.ncbi.nlm.nih.gov/pubmed/33329369
http://dx.doi.org/10.3389/fneur.2020.606478
Descripción
Sumario:The robustness of brain structural networks, estimated from diffusion MRI data, may be relevant to cognition. We investigate whether measures of network robustness, such as Ollivier-Ricci curvature, can explain cognitive impairment in multiple sclerosis (MS). We assessed whether local (i.e., cortical area) and/or global (i.e., whole brain) robustness, differs between cognitively impaired (MSCI) and non-impaired (MSNI) MS patients. Fifty patients, with Expanded Disability Status Scale mean (m): 3.2, disease duration m: 12 years, and age m: 40 years, were enrolled. Cognitive impairment scores were estimated from the Minimal Assessment of Cognitive Function in Multiple Sclerosis. Images were obtained in a 3T MRI using a diffusion protocol with a 2 min acquisition time. Brain structural networks were created using 333 cortical areas. Local and global robustness was estimated for each individual, and comparisons were performed between MSCI and MSNI patients. 31 MSCI and 10 MSNI patients were included in the analyses. Brain structural network robustness and centrality showed significant correlations with cognitive impairment. Measures of network robustness and centrality identified specific cortical areas relevant to MS-related cognitive impairment. These measures can be obtained on clinical scanners and are succinct yet accurate potential biomarkers of cognitive impairment.