Cargando…
Computational methods for detecting cancer hotspots
Cancer mutations that are recurrently observed among patients are known as hotspots. Hotspots are highly relevant because they are, presumably, likely functional. Known hotspots in BRAF, PIK3CA, TP53, KRAS, IDH1 support this idea. However, hundreds of hotspots have never been validated experimentall...
Autores principales: | Martinez-Ledesma, Emmanuel, Flores, David, Trevino, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711189/ https://www.ncbi.nlm.nih.gov/pubmed/33304455 http://dx.doi.org/10.1016/j.csbj.2020.11.020 |
Ejemplares similares
-
HotSpotAnnotations—a database for hotspot mutations and annotations in cancer
por: Trevino, Victor
Publicado: (2020) -
Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions
por: Treviño, Victor, et al.
Publicado: (2017) -
Identification of a multi-cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm
por: Martinez-Ledesma, Emmanuel, et al.
Publicado: (2015) -
Modeling and analysis of site-specific mutations in cancer identifies known plus putative novel hotspots and bias due to contextual sequences
por: Trevino, Victor
Publicado: (2020) -
Integration and comparison of different genomic data for outcome prediction in cancer
por: Gómez-Rueda, Hugo, et al.
Publicado: (2015)