Cargando…
A novel bioinformatics approach to identify the consistently well-performing normalization strategy for current metabolomic studies
Unwanted experimental/biological variation and technical error are frequently encountered in current metabolomics, which requires the employment of normalization methods for removing undesired data fluctuations. To ensure the ‘thorough’ removal of unwanted variations, the collective consideration of...
Autores principales: | Yang, Qingxia, Hong, Jiajun, Li, Yi, Xue, Weiwei, Li, Song, Yang, Hui, Zhu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711263/ https://www.ncbi.nlm.nih.gov/pubmed/31776543 http://dx.doi.org/10.1093/bib/bbz137 |
Ejemplares similares
-
ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies
por: Tang, Jing, et al.
Publicado: (2019) -
Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning
por: Hong, Jiajun, et al.
Publicado: (2019) -
Community curation of bioinformatics software and data resources
por: Ison, Jon, et al.
Publicado: (2019) -
Bioinformatics mentorship in a resource limited setting
por: Jjingo, Daudi, et al.
Publicado: (2021) -
CRAFT: a bioinformatics software for custom prediction of circular RNA functions
por: Dal Molin, Anna, et al.
Publicado: (2022)