Cargando…

Endothelial shear stress enhancements: a potential solution for critically ill Covid-19 patients

Most critically ill Covid-19 patients succumb to multiple organ failure and/or sudden cardiac arrest (SCA) as a result of comorbid endothelial dysfunction disorders which had probably aggravated by conventional mechanical assist devices. Even worse, mechanical ventilators prevent the respiratory pum...

Descripción completa

Detalles Bibliográficos
Autor principal: Nour, Sayed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711274/
https://www.ncbi.nlm.nih.gov/pubmed/33272285
http://dx.doi.org/10.1186/s12938-020-00835-7
Descripción
Sumario:Most critically ill Covid-19 patients succumb to multiple organ failure and/or sudden cardiac arrest (SCA) as a result of comorbid endothelial dysfunction disorders which had probably aggravated by conventional mechanical assist devices. Even worse, mechanical ventilators prevent the respiratory pump from performing its crucial function as a potential generator of endothelial shear stress (ESS) which controls microcirculation and hemodynamics since birth. The purpose of this work is to bring our experience with ESS enhancement and pulmonary vascular resistance (PVR) management as a potential therapeutic solution in acute respiratory distress syndrome (ARDS). We propose a non-invasive device composed of thoracic and infradiaphragmatic compartments that will be pulsated in an alternating frequency (20/40 bpm) with low-pressure pneumatic generator (0.1–0.5 bar). Oxygen supply, nasogastric with, or without endotracheal tubes are considered.