Cargando…

Quantum Probability’s Algebraic Origin

Max Born’s statistical interpretation made probabilities play a major role in quantum theory. Here we show that these quantum probabilities and the classical probabilities have very different origins. Although the latter always result from an assumed probability measure, the first include transition...

Descripción completa

Detalles Bibliográficos
Autor principal: Niestegge, Gerd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711441/
https://www.ncbi.nlm.nih.gov/pubmed/33286964
http://dx.doi.org/10.3390/e22111196
Descripción
Sumario:Max Born’s statistical interpretation made probabilities play a major role in quantum theory. Here we show that these quantum probabilities and the classical probabilities have very different origins. Although the latter always result from an assumed probability measure, the first include transition probabilities with a purely algebraic origin. Moreover, the general definition of transition probability introduced here comprises not only the well-known quantum mechanical transition probabilities between pure states or wave functions, but further physically meaningful and experimentally verifiable novel cases. A transition probability that differs from 0 and 1 manifests the typical quantum indeterminacy in a similar way as Heisenberg’s and others’ uncertainty relations and, furthermore, rules out deterministic states in the same way as the Bell-Kochen-Specker theorem. However, the transition probability defined here achieves a lot more beyond that: it demonstrates that the algebraic structure of the Hilbert space quantum logic dictates the precise values of certain probabilities and it provides an unexpected access to these quantum probabilities that does not rely on states or wave functions.