Cargando…
Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers
Boltzmann machines have useful roles in deep learning applications, such as generative data modeling, initializing weights for other types of networks, or extracting efficient representations from high-dimensional data. Most Boltzmann machines use restricted topologies that exclude looping connectiv...
Autores principales: | Liu, Jeremy, Yao, Ke-Thia, Spedalieri, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711444/ https://www.ncbi.nlm.nih.gov/pubmed/33286970 http://dx.doi.org/10.3390/e22111202 |
Ejemplares similares
-
Generative and discriminative training of Boltzmann machine through quantum annealing
por: Srivastava, Siddhartha, et al.
Publicado: (2023) -
Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
por: Xu, Guanglei, et al.
Publicado: (2021) -
Quantum annealing with special drivers for circuit fault diagnostics
por: Leipold, Hannes, et al.
Publicado: (2022) -
Reconfigurable Stochastic neurons based on tin oxide/MoS(2) hetero-memristors for simulated annealing and the Boltzmann machine
por: Yan, Xiaodong, et al.
Publicado: (2021) -
A quantum-inspired probabilistic prime factorization based on virtually connected Boltzmann machine and probabilistic annealing
por: Jung, Hyundo, et al.
Publicado: (2023)