Cargando…

Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression

IMPORTANCE: Diverse models have been developed to predict psychosis in patients with clinical high-risk (CHR) states. Whether prediction can be improved by efficiently combining clinical and biological models and by broadening the risk spectrum to young patients with depressive syndromes remains unc...

Descripción completa

Detalles Bibliográficos
Autores principales: Koutsouleris, Nikolaos, Dwyer, Dominic B., Degenhardt, Franziska, Maj, Carlo, Urquijo-Castro, Maria Fernanda, Sanfelici, Rachele, Popovic, David, Oeztuerk, Oemer, Haas, Shalaila S., Weiske, Johanna, Ruef, Anne, Kambeitz-Ilankovic, Lana, Antonucci, Linda A., Neufang, Susanne, Schmidt-Kraepelin, Christian, Ruhrmann, Stephan, Penzel, Nora, Kambeitz, Joseph, Haidl, Theresa K., Rosen, Marlene, Chisholm, Katharine, Riecher-Rössler, Anita, Egloff, Laura, Schmidt, André, Andreou, Christina, Hietala, Jarmo, Schirmer, Timo, Romer, Georg, Walger, Petra, Franscini, Maurizia, Traber-Walker, Nina, Schimmelmann, Benno G., Flückiger, Rahel, Michel, Chantal, Rössler, Wulf, Borisov, Oleg, Krawitz, Peter M., Heekeren, Karsten, Buechler, Roman, Pantelis, Christos, Falkai, Peter, Salokangas, Raimo K. R., Lencer, Rebekka, Bertolino, Alessandro, Borgwardt, Stefan, Noethen, Markus, Brambilla, Paolo, Wood, Stephen J., Upthegrove, Rachel, Schultze-Lutter, Frauke, Theodoridou, Anastasia, Meisenzahl, Eva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711566/
https://www.ncbi.nlm.nih.gov/pubmed/33263726
http://dx.doi.org/10.1001/jamapsychiatry.2020.3604
_version_ 1783618175034720256
author Koutsouleris, Nikolaos
Dwyer, Dominic B.
Degenhardt, Franziska
Maj, Carlo
Urquijo-Castro, Maria Fernanda
Sanfelici, Rachele
Popovic, David
Oeztuerk, Oemer
Haas, Shalaila S.
Weiske, Johanna
Ruef, Anne
Kambeitz-Ilankovic, Lana
Antonucci, Linda A.
Neufang, Susanne
Schmidt-Kraepelin, Christian
Ruhrmann, Stephan
Penzel, Nora
Kambeitz, Joseph
Haidl, Theresa K.
Rosen, Marlene
Chisholm, Katharine
Riecher-Rössler, Anita
Egloff, Laura
Schmidt, André
Andreou, Christina
Hietala, Jarmo
Schirmer, Timo
Romer, Georg
Walger, Petra
Franscini, Maurizia
Traber-Walker, Nina
Schimmelmann, Benno G.
Flückiger, Rahel
Michel, Chantal
Rössler, Wulf
Borisov, Oleg
Krawitz, Peter M.
Heekeren, Karsten
Buechler, Roman
Pantelis, Christos
Falkai, Peter
Salokangas, Raimo K. R.
Lencer, Rebekka
Bertolino, Alessandro
Borgwardt, Stefan
Noethen, Markus
Brambilla, Paolo
Wood, Stephen J.
Upthegrove, Rachel
Schultze-Lutter, Frauke
Theodoridou, Anastasia
Meisenzahl, Eva
author_facet Koutsouleris, Nikolaos
Dwyer, Dominic B.
Degenhardt, Franziska
Maj, Carlo
Urquijo-Castro, Maria Fernanda
Sanfelici, Rachele
Popovic, David
Oeztuerk, Oemer
Haas, Shalaila S.
Weiske, Johanna
Ruef, Anne
Kambeitz-Ilankovic, Lana
Antonucci, Linda A.
Neufang, Susanne
Schmidt-Kraepelin, Christian
Ruhrmann, Stephan
Penzel, Nora
Kambeitz, Joseph
Haidl, Theresa K.
Rosen, Marlene
Chisholm, Katharine
Riecher-Rössler, Anita
Egloff, Laura
Schmidt, André
Andreou, Christina
Hietala, Jarmo
Schirmer, Timo
Romer, Georg
Walger, Petra
Franscini, Maurizia
Traber-Walker, Nina
Schimmelmann, Benno G.
Flückiger, Rahel
Michel, Chantal
Rössler, Wulf
Borisov, Oleg
Krawitz, Peter M.
Heekeren, Karsten
Buechler, Roman
Pantelis, Christos
Falkai, Peter
Salokangas, Raimo K. R.
Lencer, Rebekka
Bertolino, Alessandro
Borgwardt, Stefan
Noethen, Markus
Brambilla, Paolo
Wood, Stephen J.
Upthegrove, Rachel
Schultze-Lutter, Frauke
Theodoridou, Anastasia
Meisenzahl, Eva
author_sort Koutsouleris, Nikolaos
collection PubMed
description IMPORTANCE: Diverse models have been developed to predict psychosis in patients with clinical high-risk (CHR) states. Whether prediction can be improved by efficiently combining clinical and biological models and by broadening the risk spectrum to young patients with depressive syndromes remains unclear. OBJECTIVES: To evaluate whether psychosis transition can be predicted in patients with CHR or recent-onset depression (ROD) using multimodal machine learning that optimally integrates clinical and neurocognitive data, structural magnetic resonance imaging (sMRI), and polygenic risk scores (PRS) for schizophrenia; to assess models’ geographic generalizability; to test and integrate clinicians’ predictions; and to maximize clinical utility by building a sequential prognostic system. DESIGN, SETTING, AND PARTICIPANTS: This multisite, longitudinal prognostic study performed in 7 academic early recognition services in 5 European countries followed up patients with CHR syndromes or ROD and healthy volunteers. The referred sample of 167 patients with CHR syndromes and 167 with ROD was recruited from February 1, 2014, to May 31, 2017, of whom 26 (23 with CHR syndromes and 3 with ROD) developed psychosis. Patients with 18-month follow-up (n = 246) were used for model training and leave-one-site-out cross-validation. The remaining 88 patients with nontransition served as the validation of model specificity. Three hundred thirty-four healthy volunteers provided a normative sample for prognostic signature evaluation. Three independent Swiss projects contributed a further 45 cases with psychosis transition and 600 with nontransition for the external validation of clinical-neurocognitive, sMRI-based, and combined models. Data were analyzed from January 1, 2019, to March 31, 2020. MAIN OUTCOMES AND MEASURES: Accuracy and generalizability of prognostic systems. RESULTS: A total of 668 individuals (334 patients and 334 controls) were included in the analysis (mean [SD] age, 25.1 [5.8] years; 354 [53.0%] female and 314 [47.0%] male). Clinicians attained a balanced accuracy of 73.2% by effectively ruling out (specificity, 84.9%) but ineffectively ruling in (sensitivity, 61.5%) psychosis transition. In contrast, algorithms showed high sensitivity (76.0%-88.0%) but low specificity (53.5%-66.8%). A cybernetic risk calculator combining all algorithmic and human components predicted psychosis with a balanced accuracy of 85.5% (sensitivity, 84.6%; specificity, 86.4%). In comparison, an optimal prognostic workflow produced a balanced accuracy of 85.9% (sensitivity, 84.6%; specificity, 87.3%) at a much lower diagnostic burden by sequentially integrating clinical-neurocognitive, expert-based, PRS-based, and sMRI-based risk estimates as needed for the given patient. Findings were supported by good external validation results. CONCLUSIONS AND RELEVANCE: These findings suggest that psychosis transition can be predicted in a broader risk spectrum by sequentially integrating algorithms’ and clinicians’ risk estimates. For clinical translation, the proposed workflow should undergo large-scale international validation.
format Online
Article
Text
id pubmed-7711566
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Medical Association
record_format MEDLINE/PubMed
spelling pubmed-77115662020-12-03 Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression Koutsouleris, Nikolaos Dwyer, Dominic B. Degenhardt, Franziska Maj, Carlo Urquijo-Castro, Maria Fernanda Sanfelici, Rachele Popovic, David Oeztuerk, Oemer Haas, Shalaila S. Weiske, Johanna Ruef, Anne Kambeitz-Ilankovic, Lana Antonucci, Linda A. Neufang, Susanne Schmidt-Kraepelin, Christian Ruhrmann, Stephan Penzel, Nora Kambeitz, Joseph Haidl, Theresa K. Rosen, Marlene Chisholm, Katharine Riecher-Rössler, Anita Egloff, Laura Schmidt, André Andreou, Christina Hietala, Jarmo Schirmer, Timo Romer, Georg Walger, Petra Franscini, Maurizia Traber-Walker, Nina Schimmelmann, Benno G. Flückiger, Rahel Michel, Chantal Rössler, Wulf Borisov, Oleg Krawitz, Peter M. Heekeren, Karsten Buechler, Roman Pantelis, Christos Falkai, Peter Salokangas, Raimo K. R. Lencer, Rebekka Bertolino, Alessandro Borgwardt, Stefan Noethen, Markus Brambilla, Paolo Wood, Stephen J. Upthegrove, Rachel Schultze-Lutter, Frauke Theodoridou, Anastasia Meisenzahl, Eva JAMA Psychiatry Original Investigation IMPORTANCE: Diverse models have been developed to predict psychosis in patients with clinical high-risk (CHR) states. Whether prediction can be improved by efficiently combining clinical and biological models and by broadening the risk spectrum to young patients with depressive syndromes remains unclear. OBJECTIVES: To evaluate whether psychosis transition can be predicted in patients with CHR or recent-onset depression (ROD) using multimodal machine learning that optimally integrates clinical and neurocognitive data, structural magnetic resonance imaging (sMRI), and polygenic risk scores (PRS) for schizophrenia; to assess models’ geographic generalizability; to test and integrate clinicians’ predictions; and to maximize clinical utility by building a sequential prognostic system. DESIGN, SETTING, AND PARTICIPANTS: This multisite, longitudinal prognostic study performed in 7 academic early recognition services in 5 European countries followed up patients with CHR syndromes or ROD and healthy volunteers. The referred sample of 167 patients with CHR syndromes and 167 with ROD was recruited from February 1, 2014, to May 31, 2017, of whom 26 (23 with CHR syndromes and 3 with ROD) developed psychosis. Patients with 18-month follow-up (n = 246) were used for model training and leave-one-site-out cross-validation. The remaining 88 patients with nontransition served as the validation of model specificity. Three hundred thirty-four healthy volunteers provided a normative sample for prognostic signature evaluation. Three independent Swiss projects contributed a further 45 cases with psychosis transition and 600 with nontransition for the external validation of clinical-neurocognitive, sMRI-based, and combined models. Data were analyzed from January 1, 2019, to March 31, 2020. MAIN OUTCOMES AND MEASURES: Accuracy and generalizability of prognostic systems. RESULTS: A total of 668 individuals (334 patients and 334 controls) were included in the analysis (mean [SD] age, 25.1 [5.8] years; 354 [53.0%] female and 314 [47.0%] male). Clinicians attained a balanced accuracy of 73.2% by effectively ruling out (specificity, 84.9%) but ineffectively ruling in (sensitivity, 61.5%) psychosis transition. In contrast, algorithms showed high sensitivity (76.0%-88.0%) but low specificity (53.5%-66.8%). A cybernetic risk calculator combining all algorithmic and human components predicted psychosis with a balanced accuracy of 85.5% (sensitivity, 84.6%; specificity, 86.4%). In comparison, an optimal prognostic workflow produced a balanced accuracy of 85.9% (sensitivity, 84.6%; specificity, 87.3%) at a much lower diagnostic burden by sequentially integrating clinical-neurocognitive, expert-based, PRS-based, and sMRI-based risk estimates as needed for the given patient. Findings were supported by good external validation results. CONCLUSIONS AND RELEVANCE: These findings suggest that psychosis transition can be predicted in a broader risk spectrum by sequentially integrating algorithms’ and clinicians’ risk estimates. For clinical translation, the proposed workflow should undergo large-scale international validation. American Medical Association 2020-12-02 2021-02 /pmc/articles/PMC7711566/ /pubmed/33263726 http://dx.doi.org/10.1001/jamapsychiatry.2020.3604 Text en Copyright 2020 Koutsouleris N et al. JAMA Psychiatry. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the CC-BY License.
spellingShingle Original Investigation
Koutsouleris, Nikolaos
Dwyer, Dominic B.
Degenhardt, Franziska
Maj, Carlo
Urquijo-Castro, Maria Fernanda
Sanfelici, Rachele
Popovic, David
Oeztuerk, Oemer
Haas, Shalaila S.
Weiske, Johanna
Ruef, Anne
Kambeitz-Ilankovic, Lana
Antonucci, Linda A.
Neufang, Susanne
Schmidt-Kraepelin, Christian
Ruhrmann, Stephan
Penzel, Nora
Kambeitz, Joseph
Haidl, Theresa K.
Rosen, Marlene
Chisholm, Katharine
Riecher-Rössler, Anita
Egloff, Laura
Schmidt, André
Andreou, Christina
Hietala, Jarmo
Schirmer, Timo
Romer, Georg
Walger, Petra
Franscini, Maurizia
Traber-Walker, Nina
Schimmelmann, Benno G.
Flückiger, Rahel
Michel, Chantal
Rössler, Wulf
Borisov, Oleg
Krawitz, Peter M.
Heekeren, Karsten
Buechler, Roman
Pantelis, Christos
Falkai, Peter
Salokangas, Raimo K. R.
Lencer, Rebekka
Bertolino, Alessandro
Borgwardt, Stefan
Noethen, Markus
Brambilla, Paolo
Wood, Stephen J.
Upthegrove, Rachel
Schultze-Lutter, Frauke
Theodoridou, Anastasia
Meisenzahl, Eva
Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
title Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
title_full Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
title_fullStr Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
title_full_unstemmed Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
title_short Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
title_sort multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression
topic Original Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711566/
https://www.ncbi.nlm.nih.gov/pubmed/33263726
http://dx.doi.org/10.1001/jamapsychiatry.2020.3604
work_keys_str_mv AT koutsoulerisnikolaos multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT dwyerdominicb multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT degenhardtfranziska multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT majcarlo multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT urquijocastromariafernanda multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT sanfelicirachele multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT popovicdavid multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT oeztuerkoemer multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT haasshalailas multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT weiskejohanna multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT ruefanne multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT kambeitzilankoviclana multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT antonuccilindaa multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT neufangsusanne multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT schmidtkraepelinchristian multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT ruhrmannstephan multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT penzelnora multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT kambeitzjoseph multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT haidltheresak multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT rosenmarlene multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT chisholmkatharine multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT riecherrossleranita multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT eglofflaura multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT schmidtandre multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT andreouchristina multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT hietalajarmo multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT schirmertimo multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT romergeorg multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT walgerpetra multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT franscinimaurizia multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT traberwalkernina multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT schimmelmannbennog multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT fluckigerrahel multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT michelchantal multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT rosslerwulf multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT borisovoleg multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT krawitzpeterm multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT heekerenkarsten multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT buechlerroman multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT pantelischristos multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT falkaipeter multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT salokangasraimokr multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT lencerrebekka multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT bertolinoalessandro multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT borgwardtstefan multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT noethenmarkus multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT brambillapaolo multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT woodstephenj multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT upthegroverachel multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT schultzelutterfrauke multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT theodoridouanastasia multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression
AT meisenzahleva multimodalmachinelearningworkflowsforpredictionofpsychosisinpatientswithclinicalhighrisksyndromesandrecentonsetdepression