Cargando…
Minimum Spanning vs. Principal Trees for Structured Approximations of Multi-Dimensional Datasets
Construction of graph-based approximations for multi-dimensional data point clouds is widely used in a variety of areas. Notable examples of applications of such approximators are cellular trajectory inference in single-cell data analysis, analysis of clinical trajectories from synchronic datasets,...
Autores principales: | Chervov, Alexander, Bac, Jonathan, Zinovyev, Andrei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711596/ https://www.ncbi.nlm.nih.gov/pubmed/33287042 http://dx.doi.org/10.3390/e22111274 |
Ejemplares similares
-
Lizard Brain: Tackling Locally Low-Dimensional Yet Globally Complex Organization of Multi-Dimensional Datasets
por: Bac, Jonathan, et al.
Publicado: (2020) -
Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to myocardial infarction and diabetes data
por: Golovenkin, Sergey E, et al.
Publicado: (2020) -
Method And Software For Fast Construction Of Principal Manifolds Approximations
por: Zinovyev, A Yu
Publicado: (2003) -
Visualization of very large high-dimensional data sets as minimum spanning trees
por: Probst, Daniel, et al.
Publicado: (2020) -
Minimum spanning tree analysis of the human connectome
por: van Dellen, Edwin, et al.
Publicado: (2018)