Cargando…
Enumerating Tree-Like Graphs and Polymer Topologies with a Given Cycle Rank
Cycle rank is an important notion that is widely used to classify, understand, and discover new chemical compounds. We propose a method to enumerate all non-isomorphic tree-like graphs of a given cycle rank with self-loops and no multiple edges. To achieve this, we develop an algorithm to enumerate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711681/ https://www.ncbi.nlm.nih.gov/pubmed/33287063 http://dx.doi.org/10.3390/e22111295 |
Sumario: | Cycle rank is an important notion that is widely used to classify, understand, and discover new chemical compounds. We propose a method to enumerate all non-isomorphic tree-like graphs of a given cycle rank with self-loops and no multiple edges. To achieve this, we develop an algorithm to enumerate all non-isomorphic rooted graphs with the required constraints. The idea of our method is to define a canonical representation of rooted graphs and enumerate all non-isomorphic graphs by generating the canonical representation of rooted graphs. An important feature of our method is that for an integer [Formula: see text] , it generates all required graphs with n vertices in [Formula: see text] time per graph and [Formula: see text] space in total, without generating invalid intermediate structures. We performed some experiments to enumerate graphs with a given cycle rank from which it is evident that our method is efficient. As an application of our method, we can generate tree-like polymer topologies of a given cycle rank with self-loops and no multiple edges. |
---|