Cargando…

Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination

Cell polarization comprises highly controlled processes and occurs in most eukaryotic organisms. In yeast, the processes of budding, mating and filamentation require coordinated mechanisms leading to polarized growth. Filamentous fungi, such as Aspergillus fumigatus, are an extreme example of cell p...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin-Vicente, Adela, Souza, Ana C. O., Nywening, Ashley V., Ge, Wenbo, Fortwendel, Jarrod R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711769/
https://www.ncbi.nlm.nih.gov/pubmed/33202962
http://dx.doi.org/10.3390/jof6040285
Descripción
Sumario:Cell polarization comprises highly controlled processes and occurs in most eukaryotic organisms. In yeast, the processes of budding, mating and filamentation require coordinated mechanisms leading to polarized growth. Filamentous fungi, such as Aspergillus fumigatus, are an extreme example of cell polarization, essential for both vegetative and pathogenic growth. A major regulator of polarized growth in yeast is the small GTPase Rsr1, which is essential for bud-site selection. Here, we show that deletion of the putative A. fumigatus ortholog, rsrA, causes only a modest reduction of growth rate and delay in germ tube emergence. In contrast, overexpression of rsrA results in a morphogenesis defect, characterized by a significant delay in polarity establishment followed by the establishment of multiple growth axes. This aberrant phenotype is reversed when rsrA expression levels are decreased, suggesting that correct regulation of RsrA activity is crucial for accurate patterning of polarity establishment. Despite this finding, deletion or overexpression of rsrA resulted in no changes of A. fumigatus virulence attributes in a mouse model of invasive aspergillosis. Additional mutational analyses revealed that RsrA cooperates genetically with the small GTPase, RasA, to support A. fumigatus viability.