Cargando…

Automated Conditional Screening of Multiple Escherichia coli Strains in Parallel Adaptive Fed-Batch Cultivations

In bioprocess development, the host and the genetic construct for a new biomanufacturing process are selected in the early developmental stages. This decision, made at the screening scale with very limited information about the performance in larger reactors, has a major influence on the efficiency...

Descripción completa

Detalles Bibliográficos
Autores principales: Hans, Sebastian, Haby, Benjamin, Krausch, Niels, Barz, Tilman, Neubauer, Peter, Cruz-Bournazou, Mariano Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711848/
https://www.ncbi.nlm.nih.gov/pubmed/33187191
http://dx.doi.org/10.3390/bioengineering7040145
Descripción
Sumario:In bioprocess development, the host and the genetic construct for a new biomanufacturing process are selected in the early developmental stages. This decision, made at the screening scale with very limited information about the performance in larger reactors, has a major influence on the efficiency of the final process. To overcome this, scale-down approaches during screenings that show the real cell factory performance at industrial-like conditions are essential. We present a fully automated robotic facility with 24 parallel mini-bioreactors that is operated by a model-based adaptive input design framework for the characterization of clone libraries under scale-down conditions. The cultivation operation strategies are computed and continuously refined based on a macro-kinetic growth model that is continuously re-fitted to the available experimental data. The added value of the approach is demonstrated with 24 parallel fed-batch cultivations in a mini-bioreactor system with eight different Escherichia coli strains in triplicate. The 24 fed-batch cultivations were run under the desired conditions, generating sufficient information to define the fastest-growing strain in an environment with oscillating glucose concentrations similar to industrial-scale bioreactors.