Cargando…
Monitoring Parameter Change for Time Series Models of Counts Based on Minimum Density Power Divergence Estimator
In this study, we consider an online monitoring procedure to detect a parameter change for integer-valued generalized autoregressive heteroscedastic (INGARCH) models whose conditional density of present observations over past information follows one parameter exponential family distributions. For th...
Autores principales: | Lee, Sangyeol, Kim, Dongwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711929/ https://www.ncbi.nlm.nih.gov/pubmed/33287071 http://dx.doi.org/10.3390/e22111304 |
Ejemplares similares
-
Monitoring parameter change for bivariate time series models of counts
por: Lee, Sangyeol, et al.
Publicado: (2023) -
Robust Change Point Test for General Integer-Valued Time Series Models Based on Density Power Divergence
por: Kim, Byungsoo, et al.
Publicado: (2020) -
Composite Likelihood Methods Based on Minimum Density Power Divergence Estimator
por: Castilla, Elena, et al.
Publicado: (2017) -
Change Point Test for the Conditional Mean of Time Series of Counts Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2021) -
Monitoring Volatility Change for Time Series Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2020)