Cargando…
TNT: An Interpretable Tree-Network-Tree Learning Framework using Knowledge Distillation
Deep Neural Networks (DNNs) usually work in an end-to-end manner. This makes the trained DNNs easy to use, but they remain an ambiguous decision process for every test case. Unfortunately, the interpretability of decisions is crucial in some scenarios, such as medical or financial data mining and de...
Autores principales: | Li, Jiawei, Li, Yiming, Xiang, Xingchun, Xia, Shu-Tao, Dong, Siyi, Cai, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712003/ https://www.ncbi.nlm.nih.gov/pubmed/33286971 http://dx.doi.org/10.3390/e22111203 |
Ejemplares similares
-
TnT: a set of libraries for visualizing trees and track-based annotations for the web
por: Pignatelli, Miguel
Publicado: (2016) -
A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
por: Su, Caiyu, et al.
Publicado: (2023) -
Interpreting tree ensemble machine learning models with endoR
por: Ruaud, Albane, et al.
Publicado: (2022) -
A data-driven interpretable ensemble framework based on tree models for forecasting the occurrence of COVID-19 in the USA
por: Zheng, Hu-Li, et al.
Publicado: (2022) -
Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO(2) Extraction
por: Zhang, Huangxian, et al.
Publicado: (2022)