Cargando…

The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model

Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further i...

Descripción completa

Detalles Bibliográficos
Autores principales: Goossens, Quentin, Vancleef, Sanne, Leuridan, Steven, Pastrav, Leonard Cezar, Mulier, Michiel, Desmet, Wim, Vander Sloten, Jos, Denis, Kathleen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712050/
https://www.ncbi.nlm.nih.gov/pubmed/32987709
http://dx.doi.org/10.3390/jfb11040069
_version_ 1783618283572822016
author Goossens, Quentin
Vancleef, Sanne
Leuridan, Steven
Pastrav, Leonard Cezar
Mulier, Michiel
Desmet, Wim
Vander Sloten, Jos
Denis, Kathleen
author_facet Goossens, Quentin
Vancleef, Sanne
Leuridan, Steven
Pastrav, Leonard Cezar
Mulier, Michiel
Desmet, Wim
Vander Sloten, Jos
Denis, Kathleen
author_sort Goossens, Quentin
collection PubMed
description Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further insights in the evaluation of the mechanical behavior of orthopedic implants. An accurate numerical representation of the experimental model is important to draw meaningful conclusions from the numerical predictions. This study aims to determine the elastic material constants of a commonly used composite clavicle model by combining acoustic experimental and numerical modal analysis. The difference between the experimental and finite element (FE) predicted natural frequencies was minimized by updating the elastic material constants of the transversely isotropic cortical bone analogue that are provided by the manufacturer. The longitudinal Young’s modulus was reduced from 16.00 GPa to 12.88 GPa and the shear modulus was increased from 3.30 GPa to 4.53 GPa. These updated material properties resulted in an average natural frequency difference of 0.49% and a maximum difference of 1.73% between the FE predictions and the experimental results. The presented updated model aims to improve future research that focuses on mechanical simulations with clavicle composite bone models.
format Online
Article
Text
id pubmed-7712050
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77120502020-12-04 The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model Goossens, Quentin Vancleef, Sanne Leuridan, Steven Pastrav, Leonard Cezar Mulier, Michiel Desmet, Wim Vander Sloten, Jos Denis, Kathleen J Funct Biomater Communication Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further insights in the evaluation of the mechanical behavior of orthopedic implants. An accurate numerical representation of the experimental model is important to draw meaningful conclusions from the numerical predictions. This study aims to determine the elastic material constants of a commonly used composite clavicle model by combining acoustic experimental and numerical modal analysis. The difference between the experimental and finite element (FE) predicted natural frequencies was minimized by updating the elastic material constants of the transversely isotropic cortical bone analogue that are provided by the manufacturer. The longitudinal Young’s modulus was reduced from 16.00 GPa to 12.88 GPa and the shear modulus was increased from 3.30 GPa to 4.53 GPa. These updated material properties resulted in an average natural frequency difference of 0.49% and a maximum difference of 1.73% between the FE predictions and the experimental results. The presented updated model aims to improve future research that focuses on mechanical simulations with clavicle composite bone models. MDPI 2020-09-24 /pmc/articles/PMC7712050/ /pubmed/32987709 http://dx.doi.org/10.3390/jfb11040069 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Goossens, Quentin
Vancleef, Sanne
Leuridan, Steven
Pastrav, Leonard Cezar
Mulier, Michiel
Desmet, Wim
Vander Sloten, Jos
Denis, Kathleen
The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model
title The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model
title_full The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model
title_fullStr The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model
title_full_unstemmed The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model
title_short The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model
title_sort use of a vibro-acoustic based method to determine the composite material properties of a replicate clavicle bone model
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712050/
https://www.ncbi.nlm.nih.gov/pubmed/32987709
http://dx.doi.org/10.3390/jfb11040069
work_keys_str_mv AT goossensquentin theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT vancleefsanne theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT leuridansteven theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT pastravleonardcezar theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT muliermichiel theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT desmetwim theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT vanderslotenjos theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT deniskathleen theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT goossensquentin useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT vancleefsanne useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT leuridansteven useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT pastravleonardcezar useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT muliermichiel useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT desmetwim useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT vanderslotenjos useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel
AT deniskathleen useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel