Cargando…
The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model
Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712050/ https://www.ncbi.nlm.nih.gov/pubmed/32987709 http://dx.doi.org/10.3390/jfb11040069 |
_version_ | 1783618283572822016 |
---|---|
author | Goossens, Quentin Vancleef, Sanne Leuridan, Steven Pastrav, Leonard Cezar Mulier, Michiel Desmet, Wim Vander Sloten, Jos Denis, Kathleen |
author_facet | Goossens, Quentin Vancleef, Sanne Leuridan, Steven Pastrav, Leonard Cezar Mulier, Michiel Desmet, Wim Vander Sloten, Jos Denis, Kathleen |
author_sort | Goossens, Quentin |
collection | PubMed |
description | Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further insights in the evaluation of the mechanical behavior of orthopedic implants. An accurate numerical representation of the experimental model is important to draw meaningful conclusions from the numerical predictions. This study aims to determine the elastic material constants of a commonly used composite clavicle model by combining acoustic experimental and numerical modal analysis. The difference between the experimental and finite element (FE) predicted natural frequencies was minimized by updating the elastic material constants of the transversely isotropic cortical bone analogue that are provided by the manufacturer. The longitudinal Young’s modulus was reduced from 16.00 GPa to 12.88 GPa and the shear modulus was increased from 3.30 GPa to 4.53 GPa. These updated material properties resulted in an average natural frequency difference of 0.49% and a maximum difference of 1.73% between the FE predictions and the experimental results. The presented updated model aims to improve future research that focuses on mechanical simulations with clavicle composite bone models. |
format | Online Article Text |
id | pubmed-7712050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77120502020-12-04 The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model Goossens, Quentin Vancleef, Sanne Leuridan, Steven Pastrav, Leonard Cezar Mulier, Michiel Desmet, Wim Vander Sloten, Jos Denis, Kathleen J Funct Biomater Communication Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further insights in the evaluation of the mechanical behavior of orthopedic implants. An accurate numerical representation of the experimental model is important to draw meaningful conclusions from the numerical predictions. This study aims to determine the elastic material constants of a commonly used composite clavicle model by combining acoustic experimental and numerical modal analysis. The difference between the experimental and finite element (FE) predicted natural frequencies was minimized by updating the elastic material constants of the transversely isotropic cortical bone analogue that are provided by the manufacturer. The longitudinal Young’s modulus was reduced from 16.00 GPa to 12.88 GPa and the shear modulus was increased from 3.30 GPa to 4.53 GPa. These updated material properties resulted in an average natural frequency difference of 0.49% and a maximum difference of 1.73% between the FE predictions and the experimental results. The presented updated model aims to improve future research that focuses on mechanical simulations with clavicle composite bone models. MDPI 2020-09-24 /pmc/articles/PMC7712050/ /pubmed/32987709 http://dx.doi.org/10.3390/jfb11040069 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Goossens, Quentin Vancleef, Sanne Leuridan, Steven Pastrav, Leonard Cezar Mulier, Michiel Desmet, Wim Vander Sloten, Jos Denis, Kathleen The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model |
title | The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model |
title_full | The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model |
title_fullStr | The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model |
title_full_unstemmed | The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model |
title_short | The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model |
title_sort | use of a vibro-acoustic based method to determine the composite material properties of a replicate clavicle bone model |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712050/ https://www.ncbi.nlm.nih.gov/pubmed/32987709 http://dx.doi.org/10.3390/jfb11040069 |
work_keys_str_mv | AT goossensquentin theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT vancleefsanne theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT leuridansteven theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT pastravleonardcezar theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT muliermichiel theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT desmetwim theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT vanderslotenjos theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT deniskathleen theuseofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT goossensquentin useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT vancleefsanne useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT leuridansteven useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT pastravleonardcezar useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT muliermichiel useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT desmetwim useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT vanderslotenjos useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel AT deniskathleen useofavibroacousticbasedmethodtodeterminethecompositematerialpropertiesofareplicateclaviclebonemodel |