Cargando…

Baseline Methods for Bayesian Inference in Gumbel Distribution

Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Martín, Jacinto, Parra, María Isabel, Pizarro, Mario Martínez, Sanjuán, Eva L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712108/
https://www.ncbi.nlm.nih.gov/pubmed/33287035
http://dx.doi.org/10.3390/e22111267
_version_ 1783618297172852736
author Martín, Jacinto
Parra, María Isabel
Pizarro, Mario Martínez
Sanjuán, Eva L.
author_facet Martín, Jacinto
Parra, María Isabel
Pizarro, Mario Martínez
Sanjuán, Eva L.
author_sort Martín, Jacinto
collection PubMed
description Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an extreme value framework. The key is to take advantage of the existing relation between the baseline parameters and the parameters of the block maxima distribution. We propose two methods to perform Bayesian estimation. Baseline distribution method (BDM) consists in computing estimations for the baseline parameters with all the data, and then making a transformation to compute estimations for the block maxima parameters. Improved baseline method (IBDM) is a refinement of the initial idea, with the aim of assigning more importance to the block maxima data than to the baseline values, performed by applying BDM to develop an improved prior distribution. We compare empirically these new methods with the Standard Bayesian analysis with non-informative prior, considering three baseline distributions that lead to a Gumbel extreme distribution, namely Gumbel, Exponential and Normal, by a broad simulation study.
format Online
Article
Text
id pubmed-7712108
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77121082021-02-24 Baseline Methods for Bayesian Inference in Gumbel Distribution Martín, Jacinto Parra, María Isabel Pizarro, Mario Martínez Sanjuán, Eva L. Entropy (Basel) Article Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an extreme value framework. The key is to take advantage of the existing relation between the baseline parameters and the parameters of the block maxima distribution. We propose two methods to perform Bayesian estimation. Baseline distribution method (BDM) consists in computing estimations for the baseline parameters with all the data, and then making a transformation to compute estimations for the block maxima parameters. Improved baseline method (IBDM) is a refinement of the initial idea, with the aim of assigning more importance to the block maxima data than to the baseline values, performed by applying BDM to develop an improved prior distribution. We compare empirically these new methods with the Standard Bayesian analysis with non-informative prior, considering three baseline distributions that lead to a Gumbel extreme distribution, namely Gumbel, Exponential and Normal, by a broad simulation study. MDPI 2020-11-07 /pmc/articles/PMC7712108/ /pubmed/33287035 http://dx.doi.org/10.3390/e22111267 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Martín, Jacinto
Parra, María Isabel
Pizarro, Mario Martínez
Sanjuán, Eva L.
Baseline Methods for Bayesian Inference in Gumbel Distribution
title Baseline Methods for Bayesian Inference in Gumbel Distribution
title_full Baseline Methods for Bayesian Inference in Gumbel Distribution
title_fullStr Baseline Methods for Bayesian Inference in Gumbel Distribution
title_full_unstemmed Baseline Methods for Bayesian Inference in Gumbel Distribution
title_short Baseline Methods for Bayesian Inference in Gumbel Distribution
title_sort baseline methods for bayesian inference in gumbel distribution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712108/
https://www.ncbi.nlm.nih.gov/pubmed/33287035
http://dx.doi.org/10.3390/e22111267
work_keys_str_mv AT martinjacinto baselinemethodsforbayesianinferenceingumbeldistribution
AT parramariaisabel baselinemethodsforbayesianinferenceingumbeldistribution
AT pizarromariomartinez baselinemethodsforbayesianinferenceingumbeldistribution
AT sanjuaneval baselinemethodsforbayesianinferenceingumbeldistribution