Cargando…

Quantum Work Statistics with Initial Coherence

The two-point measurement scheme for computing the thermodynamic work performed on a system requires it to be initially in equilibrium. The Margenau–Hill scheme, among others, extends the previous approach to allow for a non-equilibrium initial state. We establish a quantitative comparison between b...

Descripción completa

Detalles Bibliográficos
Autores principales: Díaz, María García, Guarnieri, Giacomo, Paternostro, Mauro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712153/
https://www.ncbi.nlm.nih.gov/pubmed/33286991
http://dx.doi.org/10.3390/e22111223
Descripción
Sumario:The two-point measurement scheme for computing the thermodynamic work performed on a system requires it to be initially in equilibrium. The Margenau–Hill scheme, among others, extends the previous approach to allow for a non-equilibrium initial state. We establish a quantitative comparison between both schemes in terms of the amount of coherence present in the initial state of the system, as quantified by the [Formula: see text]-coherence measure. We show that the difference between the two first moments of work, the variances of work, and the average entropy production obtained in both schemes can be cast in terms of such initial coherence. Moreover, we prove that the average entropy production can take negative values in the Margenau–Hill framework.