Cargando…
A Comparative Analysis of Machine Learning Techniques for Muon Count in UHECR Extensive Air-Showers
The main goal of this work is to adapt a Physics problem to the Machine Learning (ML) domain and to compare several techniques to solve it. The problem consists of how to perform muon count from the signal registered by particle detectors which record a mix of electromagnetic and muonic signals. Fin...
Autores principales: | Guillén, Alberto, Martínez, José, Carceller, Juan Miguel, Herrera, Luis Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712216/ https://www.ncbi.nlm.nih.gov/pubmed/33286984 http://dx.doi.org/10.3390/e22111216 |
Ejemplares similares
-
Measurement of the Lateral Distribution Function of UHECR Air shower with the Pierre Auger Observatory
por: Barnhill, D
Publicado: (2005) -
Measurements of the lateral distribution of the muon component of extensive air showers underground
por: Kotaidis, V, et al.
Publicado: (2003) -
Measurements of the muon component of extensive air showers at 320 mwe underground
por: Grupen, C, et al.
Publicado: (2003) -
Muon production in extensive air showers and fixed target accelerator data
por: Meurer, C
Publicado: (2007) -
Extensive air showers
por: Rao, M V S, et al.
Publicado: (1997)