Cargando…
A Two-Moment Inequality with Applications to Rényi Entropy and Mutual Information
This paper explores some applications of a two-moment inequality for the integral of the rth power of a function, where [Formula: see text]. The first contribution is an upper bound on the Rényi entropy of a random vector in terms of the two different moments. When one of the moments is the zeroth m...
Autor principal: | Reeves, Galen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712232/ https://www.ncbi.nlm.nih.gov/pubmed/33287012 http://dx.doi.org/10.3390/e22111244 |
Ejemplares similares
-
A Direct Link between Rényi–Tsallis Entropy and Hölder’s Inequality—Yet Another Proof of Rényi–Tsallis Entropy Maximization
por: Tanaka, Hisa-Aki, et al.
Publicado: (2019) -
Testing Nonlinearity with Rényi and Tsallis Mutual Information with an Application in the EKC Hypothesis
por: Tuna, Elif, et al.
Publicado: (2022) -
Renyi entropy and mutual information measurement of market expectations and investor fear during the COVID-19 pandemic
por: Lahmiri, Salim, et al.
Publicado: (2020) -
Rényi Entropy Power Inequalities via Normal Transport and Rotation
por: Rioul, Olivier
Publicado: (2018) -
Conditional Rényi Entropy and the Relationships between Rényi Capacities
por: Aishwarya, Gautam, et al.
Publicado: (2020)