Cargando…

Efficient Markets and Contingent Claims Valuation: An Information Theoretic Approach

This research article shows how the pricing of derivative securities can be seen from the context of stochastic optimal control theory and information theory. The financial market is seen as an information processing system, which optimizes an information functional. An optimization problem is const...

Descripción completa

Detalles Bibliográficos
Autor principal: Lindgren, Jussi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712322/
https://www.ncbi.nlm.nih.gov/pubmed/33287050
http://dx.doi.org/10.3390/e22111283
Descripción
Sumario:This research article shows how the pricing of derivative securities can be seen from the context of stochastic optimal control theory and information theory. The financial market is seen as an information processing system, which optimizes an information functional. An optimization problem is constructed, for which the linearized Hamilton–Jacobi–Bellman equation is the Black–Scholes pricing equation for financial derivatives. The model suggests that one can define a reasonable Hamiltonian for the financial market, which results in an optimal transport equation for the market drift. It is shown that in such a framework, which supports Black–Scholes pricing, the market drift obeys a backwards Burgers equation and that the market reaches a thermodynamical equilibrium, which minimizes the free energy and maximizes entropy.