Cargando…
Classification of Biomedical Texts for Cardiovascular Diseases with Deep Neural Network Using a Weighted Feature Representation Method
This study aims to improve the performance of multiclass classification of biomedical texts for cardiovascular diseases by combining two different feature representation methods, i.e., bag-of-words (BoW) and word embeddings (WE). To hybridize the two feature representations, we investigated a set of...
Autores principales: | Ahmed, Nizar, Dilmaç, Fatih, Alpkocak, Adil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712354/ https://www.ncbi.nlm.nih.gov/pubmed/33050399 http://dx.doi.org/10.3390/healthcare8040392 |
Ejemplares similares
-
Identification of Leukemia Subtypes from Microscopic Images Using Convolutional Neural Network
por: Ahmed, Nizar, et al.
Publicado: (2019) -
A clinical text classification paradigm using weak supervision and deep representation
por: Wang, Yanshan, et al.
Publicado: (2019) -
Improving Feature Representation Based on a Neural Network for Author Profiling in Social Media Texts
por: Gómez-Adorno, Helena, et al.
Publicado: (2016) -
A Deep Neural Network Model using Random Forest to Extract Feature Representation for Gene Expression Data Classification
por: Kong, Yunchuan, et al.
Publicado: (2018) -
BioBERT: a pre-trained biomedical language representation model for biomedical text mining
por: Lee, Jinhyuk, et al.
Publicado: (2020)