Cargando…
Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment
Ceramic-based nanocomposite membranes are gaining great attention in various applications, such as water treatment; gas separation; oil and gas, amid their superior fouling resistance and remarkable chemical/thermal stability. Here, we report for the first time the use of spark plasma sintering (SPS...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712463/ https://www.ncbi.nlm.nih.gov/pubmed/32353969 http://dx.doi.org/10.3390/nano10050845 |
_version_ | 1783618379666423808 |
---|---|
author | Hussein, Mohamed Abdrabou Shahzad, Hafiz Khurram Patel, Faheemuddin Atieh, Muataz Ali Al-Aqeeli, Nasser Baroud, Turki Nabieh Laoui, Tahar |
author_facet | Hussein, Mohamed Abdrabou Shahzad, Hafiz Khurram Patel, Faheemuddin Atieh, Muataz Ali Al-Aqeeli, Nasser Baroud, Turki Nabieh Laoui, Tahar |
author_sort | Hussein, Mohamed Abdrabou |
collection | PubMed |
description | Ceramic-based nanocomposite membranes are gaining great attention in various applications, such as water treatment; gas separation; oil and gas, amid their superior fouling resistance and remarkable chemical/thermal stability. Here, we report for the first time the use of spark plasma sintering (SPS) process to fabricate a porous alumina–carbon nanotubes (Al(2)O(3)–CNT) nanocomposite membrane for water treatment. The challenge is this work is to achieve a balance between the amount of porosity, desired for a high water flux, and the membrane strength level, required to resist the applied pressure during a water flow experiment. The effect of SPS process parameters (pressure, temperature, heating rate, and holding time) on the microstructure and properties of the developed membrane was investigated and correlated. A powder mixture composed of Al(2)O(3) and 5 wt % CNT was prepared with the addition of starch as a pore former and gum Arabic and sodium dodecyl sulfate as dispersants. The powder mixture was then sintered using SPS to produce a solid but porous nanocomposite membrane. The structure and microstructure of the developed membrane were characterized using X-ray diffraction and field emission scanning electron microscopy. The performance of the membrane was assessed in terms of porosity, permeability, and mechanical properties. Moreover, the adsorption capability of the membrane was performed by evaluating its removal efficacy for cadmium (II) from water. The microstructural analysis revealed that CNT were distributed within the alumina matrix and located mainly along the grain boundaries. The permeability and strength were highly influenced by the sintering pressure and temperature, respectively. The results indicated that the membrane sintered at a pressure of 10 MPa, temperature of 1100 °C, holding time of 5 min, and heating rate of 200 °C/min exhibited the best combination of permeability and strength. This developed membrane showed a significant removal efficiency of 97% for cadmium (II) in an aqueous solution. |
format | Online Article Text |
id | pubmed-7712463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77124632020-12-04 Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment Hussein, Mohamed Abdrabou Shahzad, Hafiz Khurram Patel, Faheemuddin Atieh, Muataz Ali Al-Aqeeli, Nasser Baroud, Turki Nabieh Laoui, Tahar Nanomaterials (Basel) Article Ceramic-based nanocomposite membranes are gaining great attention in various applications, such as water treatment; gas separation; oil and gas, amid their superior fouling resistance and remarkable chemical/thermal stability. Here, we report for the first time the use of spark plasma sintering (SPS) process to fabricate a porous alumina–carbon nanotubes (Al(2)O(3)–CNT) nanocomposite membrane for water treatment. The challenge is this work is to achieve a balance between the amount of porosity, desired for a high water flux, and the membrane strength level, required to resist the applied pressure during a water flow experiment. The effect of SPS process parameters (pressure, temperature, heating rate, and holding time) on the microstructure and properties of the developed membrane was investigated and correlated. A powder mixture composed of Al(2)O(3) and 5 wt % CNT was prepared with the addition of starch as a pore former and gum Arabic and sodium dodecyl sulfate as dispersants. The powder mixture was then sintered using SPS to produce a solid but porous nanocomposite membrane. The structure and microstructure of the developed membrane were characterized using X-ray diffraction and field emission scanning electron microscopy. The performance of the membrane was assessed in terms of porosity, permeability, and mechanical properties. Moreover, the adsorption capability of the membrane was performed by evaluating its removal efficacy for cadmium (II) from water. The microstructural analysis revealed that CNT were distributed within the alumina matrix and located mainly along the grain boundaries. The permeability and strength were highly influenced by the sintering pressure and temperature, respectively. The results indicated that the membrane sintered at a pressure of 10 MPa, temperature of 1100 °C, holding time of 5 min, and heating rate of 200 °C/min exhibited the best combination of permeability and strength. This developed membrane showed a significant removal efficiency of 97% for cadmium (II) in an aqueous solution. MDPI 2020-04-28 /pmc/articles/PMC7712463/ /pubmed/32353969 http://dx.doi.org/10.3390/nano10050845 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hussein, Mohamed Abdrabou Shahzad, Hafiz Khurram Patel, Faheemuddin Atieh, Muataz Ali Al-Aqeeli, Nasser Baroud, Turki Nabieh Laoui, Tahar Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment |
title | Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment |
title_full | Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment |
title_fullStr | Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment |
title_full_unstemmed | Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment |
title_short | Porous Al(2)O(3)-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment |
title_sort | porous al(2)o(3)-cnt nanocomposite membrane produced by spark plasma sintering with tailored microstructure and properties for water treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712463/ https://www.ncbi.nlm.nih.gov/pubmed/32353969 http://dx.doi.org/10.3390/nano10050845 |
work_keys_str_mv | AT husseinmohamedabdrabou porousal2o3cntnanocompositemembraneproducedbysparkplasmasinteringwithtailoredmicrostructureandpropertiesforwatertreatment AT shahzadhafizkhurram porousal2o3cntnanocompositemembraneproducedbysparkplasmasinteringwithtailoredmicrostructureandpropertiesforwatertreatment AT patelfaheemuddin porousal2o3cntnanocompositemembraneproducedbysparkplasmasinteringwithtailoredmicrostructureandpropertiesforwatertreatment AT atiehmuatazali porousal2o3cntnanocompositemembraneproducedbysparkplasmasinteringwithtailoredmicrostructureandpropertiesforwatertreatment AT alaqeelinasser porousal2o3cntnanocompositemembraneproducedbysparkplasmasinteringwithtailoredmicrostructureandpropertiesforwatertreatment AT baroudturkinabieh porousal2o3cntnanocompositemembraneproducedbysparkplasmasinteringwithtailoredmicrostructureandpropertiesforwatertreatment AT laouitahar porousal2o3cntnanocompositemembraneproducedbysparkplasmasinteringwithtailoredmicrostructureandpropertiesforwatertreatment |