Cargando…

Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy

Gain-of-function (GOF) variants in K(+) channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K(+) currents lead to network hyperexcitability. Here, we introduce a human Na(+)-activated K(+) (K(Na)) channel variant (KCNT1-Y796H) into mice and, using a multi...

Descripción completa

Detalles Bibliográficos
Autores principales: Shore, Amy N., Colombo, Sophie, Tobin, William F., Petri, Sabrina, Cullen, Erin R., Dominguez, Soledad, Bostick, Christopher D., Beaumont, Michael A., Williams, Damian, Khodagholy, Dion, Yang, Mu, Lutz, Cathleen M., Peng, Yueqing, Gelinas, Jennifer N., Goldstein, David B., Boland, Michael J., Frankel, Wayne N., Weston, Matthew C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712469/
https://www.ncbi.nlm.nih.gov/pubmed/33113364
http://dx.doi.org/10.1016/j.celrep.2020.108303
_version_ 1783618381074661376
author Shore, Amy N.
Colombo, Sophie
Tobin, William F.
Petri, Sabrina
Cullen, Erin R.
Dominguez, Soledad
Bostick, Christopher D.
Beaumont, Michael A.
Williams, Damian
Khodagholy, Dion
Yang, Mu
Lutz, Cathleen M.
Peng, Yueqing
Gelinas, Jennifer N.
Goldstein, David B.
Boland, Michael J.
Frankel, Wayne N.
Weston, Matthew C.
author_facet Shore, Amy N.
Colombo, Sophie
Tobin, William F.
Petri, Sabrina
Cullen, Erin R.
Dominguez, Soledad
Bostick, Christopher D.
Beaumont, Michael A.
Williams, Damian
Khodagholy, Dion
Yang, Mu
Lutz, Cathleen M.
Peng, Yueqing
Gelinas, Jennifer N.
Goldstein, David B.
Boland, Michael J.
Frankel, Wayne N.
Weston, Matthew C.
author_sort Shore, Amy N.
collection PubMed
description Gain-of-function (GOF) variants in K(+) channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K(+) currents lead to network hyperexcitability. Here, we introduce a human Na(+)-activated K(+) (K(Na)) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases K(Na) currents in cortical excitatory and inhibitory neurons, there is an increase in the K(Na) current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.
format Online
Article
Text
id pubmed-7712469
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-77124692020-12-03 Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy Shore, Amy N. Colombo, Sophie Tobin, William F. Petri, Sabrina Cullen, Erin R. Dominguez, Soledad Bostick, Christopher D. Beaumont, Michael A. Williams, Damian Khodagholy, Dion Yang, Mu Lutz, Cathleen M. Peng, Yueqing Gelinas, Jennifer N. Goldstein, David B. Boland, Michael J. Frankel, Wayne N. Weston, Matthew C. Cell Rep Article Gain-of-function (GOF) variants in K(+) channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K(+) currents lead to network hyperexcitability. Here, we introduce a human Na(+)-activated K(+) (K(Na)) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases K(Na) currents in cortical excitatory and inhibitory neurons, there is an increase in the K(Na) current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention. 2020-10-27 /pmc/articles/PMC7712469/ /pubmed/33113364 http://dx.doi.org/10.1016/j.celrep.2020.108303 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license.
spellingShingle Article
Shore, Amy N.
Colombo, Sophie
Tobin, William F.
Petri, Sabrina
Cullen, Erin R.
Dominguez, Soledad
Bostick, Christopher D.
Beaumont, Michael A.
Williams, Damian
Khodagholy, Dion
Yang, Mu
Lutz, Cathleen M.
Peng, Yueqing
Gelinas, Jennifer N.
Goldstein, David B.
Boland, Michael J.
Frankel, Wayne N.
Weston, Matthew C.
Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy
title Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy
title_full Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy
title_fullStr Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy
title_full_unstemmed Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy
title_short Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy
title_sort reduced gabaergic neuron excitability, altered synaptic connectivity, and seizures in a kcnt1 gain-of-function mouse model of childhood epilepsy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712469/
https://www.ncbi.nlm.nih.gov/pubmed/33113364
http://dx.doi.org/10.1016/j.celrep.2020.108303
work_keys_str_mv AT shoreamyn reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT colombosophie reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT tobinwilliamf reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT petrisabrina reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT cullenerinr reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT dominguezsoledad reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT bostickchristopherd reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT beaumontmichaela reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT williamsdamian reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT khodagholydion reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT yangmu reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT lutzcathleenm reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT pengyueqing reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT gelinasjennifern reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT goldsteindavidb reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT bolandmichaelj reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT frankelwaynen reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy
AT westonmatthewc reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy