Cargando…
Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy
Gain-of-function (GOF) variants in K(+) channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K(+) currents lead to network hyperexcitability. Here, we introduce a human Na(+)-activated K(+) (K(Na)) channel variant (KCNT1-Y796H) into mice and, using a multi...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712469/ https://www.ncbi.nlm.nih.gov/pubmed/33113364 http://dx.doi.org/10.1016/j.celrep.2020.108303 |
_version_ | 1783618381074661376 |
---|---|
author | Shore, Amy N. Colombo, Sophie Tobin, William F. Petri, Sabrina Cullen, Erin R. Dominguez, Soledad Bostick, Christopher D. Beaumont, Michael A. Williams, Damian Khodagholy, Dion Yang, Mu Lutz, Cathleen M. Peng, Yueqing Gelinas, Jennifer N. Goldstein, David B. Boland, Michael J. Frankel, Wayne N. Weston, Matthew C. |
author_facet | Shore, Amy N. Colombo, Sophie Tobin, William F. Petri, Sabrina Cullen, Erin R. Dominguez, Soledad Bostick, Christopher D. Beaumont, Michael A. Williams, Damian Khodagholy, Dion Yang, Mu Lutz, Cathleen M. Peng, Yueqing Gelinas, Jennifer N. Goldstein, David B. Boland, Michael J. Frankel, Wayne N. Weston, Matthew C. |
author_sort | Shore, Amy N. |
collection | PubMed |
description | Gain-of-function (GOF) variants in K(+) channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K(+) currents lead to network hyperexcitability. Here, we introduce a human Na(+)-activated K(+) (K(Na)) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases K(Na) currents in cortical excitatory and inhibitory neurons, there is an increase in the K(Na) current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention. |
format | Online Article Text |
id | pubmed-7712469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-77124692020-12-03 Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy Shore, Amy N. Colombo, Sophie Tobin, William F. Petri, Sabrina Cullen, Erin R. Dominguez, Soledad Bostick, Christopher D. Beaumont, Michael A. Williams, Damian Khodagholy, Dion Yang, Mu Lutz, Cathleen M. Peng, Yueqing Gelinas, Jennifer N. Goldstein, David B. Boland, Michael J. Frankel, Wayne N. Weston, Matthew C. Cell Rep Article Gain-of-function (GOF) variants in K(+) channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K(+) currents lead to network hyperexcitability. Here, we introduce a human Na(+)-activated K(+) (K(Na)) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases K(Na) currents in cortical excitatory and inhibitory neurons, there is an increase in the K(Na) current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention. 2020-10-27 /pmc/articles/PMC7712469/ /pubmed/33113364 http://dx.doi.org/10.1016/j.celrep.2020.108303 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license. |
spellingShingle | Article Shore, Amy N. Colombo, Sophie Tobin, William F. Petri, Sabrina Cullen, Erin R. Dominguez, Soledad Bostick, Christopher D. Beaumont, Michael A. Williams, Damian Khodagholy, Dion Yang, Mu Lutz, Cathleen M. Peng, Yueqing Gelinas, Jennifer N. Goldstein, David B. Boland, Michael J. Frankel, Wayne N. Weston, Matthew C. Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy |
title | Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy |
title_full | Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy |
title_fullStr | Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy |
title_full_unstemmed | Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy |
title_short | Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy |
title_sort | reduced gabaergic neuron excitability, altered synaptic connectivity, and seizures in a kcnt1 gain-of-function mouse model of childhood epilepsy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712469/ https://www.ncbi.nlm.nih.gov/pubmed/33113364 http://dx.doi.org/10.1016/j.celrep.2020.108303 |
work_keys_str_mv | AT shoreamyn reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT colombosophie reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT tobinwilliamf reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT petrisabrina reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT cullenerinr reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT dominguezsoledad reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT bostickchristopherd reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT beaumontmichaela reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT williamsdamian reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT khodagholydion reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT yangmu reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT lutzcathleenm reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT pengyueqing reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT gelinasjennifern reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT goldsteindavidb reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT bolandmichaelj reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT frankelwaynen reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy AT westonmatthewc reducedgabaergicneuronexcitabilityalteredsynapticconnectivityandseizuresinakcnt1gainoffunctionmousemodelofchildhoodepilepsy |