Cargando…
Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras
A geometrical formulation of estimation theory for finite-dimensional [Formula: see text]-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer–Rao and Helstrom bounds for parametric stati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712486/ https://www.ncbi.nlm.nih.gov/pubmed/33266515 http://dx.doi.org/10.3390/e22111332 |
Sumario: | A geometrical formulation of estimation theory for finite-dimensional [Formula: see text]-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer–Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented. |
---|