Cargando…
Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras
A geometrical formulation of estimation theory for finite-dimensional [Formula: see text]-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer–Rao and Helstrom bounds for parametric stati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712486/ https://www.ncbi.nlm.nih.gov/pubmed/33266515 http://dx.doi.org/10.3390/e22111332 |
_version_ | 1783618384771940352 |
---|---|
author | Ciaglia, Florio M. Jost, Jürgen Schwachhöfer, Lorenz |
author_facet | Ciaglia, Florio M. Jost, Jürgen Schwachhöfer, Lorenz |
author_sort | Ciaglia, Florio M. |
collection | PubMed |
description | A geometrical formulation of estimation theory for finite-dimensional [Formula: see text]-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer–Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented. |
format | Online Article Text |
id | pubmed-7712486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77124862021-02-24 Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras Ciaglia, Florio M. Jost, Jürgen Schwachhöfer, Lorenz Entropy (Basel) Article A geometrical formulation of estimation theory for finite-dimensional [Formula: see text]-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer–Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented. MDPI 2020-11-23 /pmc/articles/PMC7712486/ /pubmed/33266515 http://dx.doi.org/10.3390/e22111332 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ciaglia, Florio M. Jost, Jürgen Schwachhöfer, Lorenz Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras |
title | Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras |
title_full | Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras |
title_fullStr | Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras |
title_full_unstemmed | Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras |
title_short | Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C(∗)-Algebras |
title_sort | differential geometric aspects of parametric estimation theory for states on finite-dimensional c(∗)-algebras |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712486/ https://www.ncbi.nlm.nih.gov/pubmed/33266515 http://dx.doi.org/10.3390/e22111332 |
work_keys_str_mv | AT ciagliafloriom differentialgeometricaspectsofparametricestimationtheoryforstatesonfinitedimensionalcalgebras AT jostjurgen differentialgeometricaspectsofparametricestimationtheoryforstatesonfinitedimensionalcalgebras AT schwachhoferlorenz differentialgeometricaspectsofparametricestimationtheoryforstatesonfinitedimensionalcalgebras |